Skip to main content
Log in

Lagrangian Floer theory on compact toric manifolds II: bulk deformations

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

This is a continuation of part I in the series of the papers on Lagrangian Floer theory on toric manifolds. Using the deformations of Floer cohomology by the ambient cycles, which we call bulk deformations, we find a continuum of non-displaceable Lagrangian fibers on some compact toric manifolds. We also provide a method of finding all fibers with non-vanishing Floer cohomology with bulk deformations in arbitrary compact toric manifolds, which we call bulk-balanced Lagrangian fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berkovich, B.G.: Spectral theory and analytic geometry over non-archimedean fields. Mathematical Surveys and Monographs 33. American Mathematical Society, Providence, RI (1990)

  2. Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedean Analysis. A Systematic Approach to Rigid Analytic Geometry, Grundlehren der Mathematischen Wissenschaften 261. Springer-Verlag, Berline (1984)

  3. Cho C.-H.: Non-displaceable Lagrangian submanifolds and Floer cohomology with non-unitary line bundle. J. Geomet. Phys. 58, 1465–1476 (2008) arXiv:0710.5454

    Article  MATH  Google Scholar 

  4. Cho C.-H., Oh Y.-G.: Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds. Asian J. Math. 10, 773–814 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Dubrovin, B.: Geometry of 2D topological field theories, Lecture Notes in Mathematics 1620. 120–348 (1996)

  6. Duistermaat J.J.: On global action-angle coordinates. Commun. Pure Appl. Math. 33(6), 687–706 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Entov M., Polterovich L.: Calabi quasimorphism and quantum homology. Int. Math. Res. Not. 2003(30), 1635–1676 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Floer A.: Morse theory for Lagrangian intersections. J. Differen. Geomet. 28, 513–547 (1988)

    MathSciNet  MATH  Google Scholar 

  9. Fukaya K.: Mirror symmetry of abelian variety and multi theta function. J. Algebra Geomet. 11, 393–512 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fukaya, K.: Application of Floer homology of Lagrangian submanifolds to symplectic topology. In: Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology, NATO Sci. Ser. II Math. Phys. Chem. 217, pp. 231–276. Springer, Dordrecht (2006)

  11. Fukaya, K.: Differentiable operad, Kuranishi correspondence, and Foundation of topological field theories based on pseudo-holomorphic curve. In: Arithmetic and Geometry around Quantization, Progr. Math. Birkäuser 279, pp. 123–200 (2009)

  12. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian intersection Floer theory-anomaly and obstruction. Kyoto University preprint (2000)

  13. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian intersection Floer theory-anomaly and obstruction. Expanded version of [FOOO1] (2006 & 2007)

  14. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian intersection Floer theory-anomaly and obstruction, Part I, & Part II. AMS/IP Studies in Advanced Mathematics, vol. 46.1, & 46.2. Amer. Math. Soc./International Press (2009)

  15. Fukaya K., Oh Y.-G., Ohta H., Ono K.: Lagrangian Floer theory on compact toric manifolds I. Duke Math. J. 151(1), 23–174 (2010) arXiv:0802.1703

    Article  MathSciNet  MATH  Google Scholar 

  16. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian Floer theory and mirror symmetry on compact toric manifolds, preprint (2010). arXiv:1009.1648

  17. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Spectral invariants with bulk, quasimorphisms and Lagrangian Floer theory (in preparation)

  18. Fukaya K., Ono K.: Arnold conjecture and Gromov-Witten invariant. Topology 38(5), 933–1048 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guillemin V.: Kähler structures on toric varieties. J. Differen. Geom. 43, 285–309 (1994)

    MathSciNet  Google Scholar 

  20. Fulton W.: Introduction to Toric Varieties, Annals of Math. Studies, 131. Princeton University Press, Princeton (1993)

    Google Scholar 

  21. Hofer H.: On the topological properties of symplectic maps. Proc. R. Soc. Edinb. 115, 25–38 (1990)

    MathSciNet  MATH  Google Scholar 

  22. Hori, K., Vafa, C.: Mirror symmetry. preprint (2000). hep-th/0002222

  23. Katz S., Liu C.-C.: Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disc. Adv. Theor. Math. Phys. 5, 1–49 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Kontsevich, M., Soibelman, Y.: Affine structures and non-archimedean analytic spaces. In: Etingof, P., Retakh, V., Singer, I.M. (eds.) The Unity of Mathematics, pp. 321–385. Progr. Math. 244, Birkhäuser (2006)

  25. Mather, J.: Stratifications and mappings. Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) 41, pp. 195–232. Academic Press, New York (1973)

  26. Ostrover Y., Tyomkin I.: On the quantum homology algebra of toric Fano manifolds. Selecta Math. 15, 121–149 (2009) arXiv:0804.0270

    Article  MathSciNet  MATH  Google Scholar 

  27. Ruan Y.: Virtual neighborhood and pseudoholomorphic curve. Turkish J. Math. 23, 161–231 (1999)

    MathSciNet  MATH  Google Scholar 

  28. Saito K.: Period mapping associated to a primitive form. Publ. R.I.M.S. 19, 1231–1261 (1983)

    Article  MATH  Google Scholar 

  29. Takahashi, A.: Primitive forms, Topological LG model coupled with gravity, and mirror symmetry, preprint. arXiv:9802059

  30. Weinstein A.: Symplectic manifolds and their Lagrangian submanifolds. Adv. Math. 6, 329–346 (1971)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Fukaya.

Additional information

KF is supported partially by JSPS Grant-in-Aid for Scientific Research No.18104001 and by Global COE Program G08, YO by US NSF grant # 0904197, HO by JSPS Grant-in-Aid for Scientific Research No.19340017, and KO by JSPS Grant-in-Aid for Scientific Research, Nos. 18340014 and 21244002.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukaya, K., Oh, YG., Ohta, H. et al. Lagrangian Floer theory on compact toric manifolds II: bulk deformations. Sel. Math. New Ser. 17, 609–711 (2011). https://doi.org/10.1007/s00029-011-0057-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-011-0057-z

Keywords

Mathematics Subject Classification (2000)

Navigation