Skip to main content
Log in

Irregular and Singular Loci of Commuting Varieties

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let \( {\user1{\mathcal{C}}} \) be the commuting variety of the Lie algebra \( \mathfrak{g} \) of a connected noncommutative reductive algebraic group G over an algebraically closed field of characteristic zero. Let \( {\user1{\mathcal{C}}}^{{{\text{sing}}}} \) be the singular locus of \( {\user1{\mathcal{C}}} \) and let \( {\user1{\mathcal{C}}}^{{{\text{irr}}}} \) be the locus of points whose G-stabilizers have dimension > rk G. We prove that: (a) \( {\user1{\mathcal{C}}}^{{{\text{sing}}}} \) is a nonempty subset of \( {\user1{\mathcal{C}}}^{{{\text{irr}}}} \); (b) \( {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{irr}}}} = 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} \) where the maximum is taken over all simple ideals \( \mathfrak{a} \) of \( \mathfrak{g} \) and \( l{\left( \mathfrak{a} \right)} \) is the “lacety” of \( \mathfrak{a} \); and (c) if \( \mathfrak{t} \) is a Cartan subalgebra of \( \mathfrak{g} \) and \( \alpha \in \mathfrak{t}^{*} \) root of \( \mathfrak{g} \) with respect to \( \mathfrak{t} \), then \( \overline{{G{\left( {{\text{Ker}}\,\alpha \times {\text{Ker }}\alpha } \right)}}} \) is an irreducible component of \( {\user1{\mathcal{C}}}^{{{\text{irr}}}} \) of codimension 4 in \( {\user1{\mathcal{C}}} \). This yields the bound \( {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} \) and, in particular, \( {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 2 \). The latter may be regarded as an evidence in favor of the known longstanding conjecture that \( {\user1{\mathcal{C}}} \) is always normal. We also prove that the algebraic variety \( {\user1{\mathcal{C}}} \) is rational.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Borho, H. Kraft, Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen, Comment. Math. Helv. 54 (1979), 61–104.

    Article  MATH  MathSciNet  Google Scholar 

  2. N. Bourbaki, Groupes et Algèbres de Lie, Chap. IV, V, VI, Hermann, Paris, 1968.

    Google Scholar 

  3. N. Bourbaki, Groupes et Algèbres de Lie, Chap. VII, VIII, Hermann, Paris, 1975.

    Google Scholar 

  4. A. Borel, T. A. Springer, Rationality properties of linear algebraic groups II, Tôhoku Math. J. 20 (1968), 443–497.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. P. Brennan, On the normality of commuting varieties of symmetric matrices, Comm. Algebra 22 (1994), no. 15, 6409–6414.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Broer, Lectures on decomposition classes, in: Representation Theories and Algebraic Geometry, NATO ASI Ser. C: Mathematical and Physical Sciences, Vol. 514, Kluwer Academic, Dordrecht, 1998, pp. 39–83.

    Google Scholar 

  7. A. Broer, Decomposition varieties in semisimple Lie algebras, Canad. J. Math. 50 (1998), 929–971.

    MATH  MathSciNet  Google Scholar 

  8. C. Chevalley, On algebraic group varieties, J. Math. Soc. Japan 6 (1954), 303–324.

    Article  MATH  MathSciNet  Google Scholar 

  9. D. H. Collingwood, W. M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold, New York, 1993.

    MATH  Google Scholar 

  10. A. Γ. Элaшвили, Πласты простых алгебр Ли особого типа, в cб.: Исследо-вания по алгебре, кaф. aлг. и геом. TГУ, кaф. выcш. aлг. MГУ, Tбилиcи, 1985, cтp 171–194. A. G. Elashvili, Sheets of exceptional simple Lie algebras, in: Researches in Algebra, Department of Algebra and Geometry, Tbilissi State University, Department of Algebra, Moscow State University, Tbilissi, 1985, pp. 171–194 (in Russian).

  11. G. Grélaud, C. Quitté, P. Tauvel, Bases de Chevalley et \( \mathfrak{s}\mathfrak{l}{\left( 2 \right)} \) -triplets des algèbres de Lie simples exceptionnelles, Université de Poitiers, Département de Mathématiques, prépublication no. 53, 1990, 124 pp.

  12. A. Grothendieck, Elements reguliers: suite, application aux groupes algebriques, Exp. XIV in: Schémas en Groupes II (SGA3), Lecture Notes in Mathematics, Vol. 152, Springer-Verlag, Berlin, 1970.

    Google Scholar 

  13. B. Kostant, The principal three-dimensional subgroups and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973–1032.

    Article  MATH  MathSciNet  Google Scholar 

  14. B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327–404.

    Article  MATH  MathSciNet  Google Scholar 

  15. N. Lemire, V. L. Popov, Z. Reichstein, Cayley groups, J. Amer. Math. Soc. 19 (2006), 921–967.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. G. Neubauer, D. J. Saltman, Two-generated commutative subalgebras of M n (F), J. Algebra 164 (1994), 545–562.

    Article  MATH  MathSciNet  Google Scholar 

  17. Э. Б. Bинбepг, B. Л. Попов, Oб одном классе квазиоднородных а ффинных многообразий, Изв. AH CCCP, cep. мaт. 36 (1972), no. 4, 749–763. Engl. transl.: V. L. Popov, E. B. Vinberg, On a class of quasihomogeneous affine varieties, Math. USSR-Izv. 6, 1972, 743–758.

  18. Э. Б. Bинбepг, B. Л. Попов, Теория инвариантов, Итoги нayки и тexники, Coвpeмeнныe пpoблeмы мaтeмaтики, Фyндaмeнтaльныe нaпpaвлeния, т. 55, M., BИИHTИ, 1989, cтp. 137–314. Engl. transl.: V. L. Popov, E. B. Vinberg, Invariant theory, in: Algebraic Geometry IV, Encyclopaedia of Mathematical Sciencies, Vol. 55, Springer-Verlag, Berlin, 1994, pp. 123–284.

  19. R. Richardson, Commuting varieties of semisimple Lie algebras and algebraic groups, Compos. Math. 38 (1979), no. 3, 311–327.

    MATH  Google Scholar 

  20. J.-P. Serre, Espaces fibrés algébriques, in: Séminaire C. Chevalley E.N.S., 1958, Anneaux de Chow et Applications, Exposé no. 1, Secrétariat Mathématique, 11 rue Pierre Curie, Paris 5e, 1958, 1-01–1-37. Reprinted in: Exposés de Séminaires 1950–1999, Documents Mathématiques (Paris), Vol. 1, Soc. Math. France, Paris, 2001, pp. 107–139.

  21. P. Tauvel, R. W. T. Yu, Lie Algebras and Algebraic Groups, Springer Monographs in Mathematics, Springer, Berlin, 2005.

    Google Scholar 

  22. I. R. Shafarevich, Basic Algebraic Geometry, Springer-Verlag, Berlin, 1977.

    MATH  Google Scholar 

  23. N. Spaltenstein, Nilpotent classes and sheets of Lie algebras in bad characteristic, Math. Z. 181 (1982), 31–48.

    Article  MATH  MathSciNet  Google Scholar 

  24. R. Steinberg, Regular elements of semi-simple algebraic groups, Publ. Math. Inst. Hautes Études Sci. 25 (1965), 49–80.

    Article  MathSciNet  Google Scholar 

  25. R. Steinberg, Conjugacy Classes in Algebraic Groups, Lecture Notes in Mathematics, Vol. 366, Springer-Verlag, Berlin, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir L. Popov.

Additional information

Dedicated to Bertram Kostant on the occasion of his 80th birthday

Supported by Russian grants PΦΦИ 08–01–00095, НШ–1987.2008.1, granting program Contemporary Problems of Theoretical Mathematics of the Mathematics Branch of the Russian Academy of Sciences, and by ETH, Zürich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, V.L. Irregular and Singular Loci of Commuting Varieties. Transformation Groups 13, 819–837 (2008). https://doi.org/10.1007/s00031-008-9018-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-008-9018-9

Key words and phrases

AMS classiffication

Navigation