Skip to main content
Log in

Restriction De La Cohomologie D’une Variété De Shimura à Ses Sous-variétés

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let G be a connected semisimple group over \( \mathbb{Q} \). Given a maximal compact subgroup KG(\( \mathbb{R} \)) such that X = G(\( \mathbb{R} \))/K is a Hermitian symmetric domain, and a convenient arithmetic subgroup Γ ⊂ G(\( \mathbb{Q} \)), one constructs a (connected) Shimura variety S = S(Γ) = Γ\X. If HG is a connected semisimple subgroup such that H(\( \mathbb{R} \)) / K is maximal compact, then Y = H(\( \mathbb{R} \))/K is a Hermitian symmetric subdomain of X. For each gG(\( \mathbb{Q} \)) one can construct a connected Shimura variety S(H, g) = (H(\( \mathbb{Q} \)) ∩ g −1Γg)\Y and a natural holomorphic map j g : S(H, g) → S induced by the map H(\( \mathbb{A} \)) → G(\( \mathbb{A} \)), hgh. Let us assume that G is anisotropic, which implies that S and S(H, g) are compact. Then, for each positive integer k, the map j g induces a restriction map

$$ R_{g} :H^{k} {\left( {S,\mathbb{C}} \right)} \to H^{k} {\left( {S{\left( {H,g} \right)},\mathbb{C}} \right)}. $$

In this paper we focus on classical Hermitian domains and give explicit criterions for the injectivity of the product of the maps R g (for g running through G(\( \mathbb{Q} \))) when restricted to the strongly primitive (in the sense of Vogan and Zuckerman) part of the cohomology. In the holomorphic case we recover previous results of Clozel and Venkataramana [CV]. We also derive applications of our results to the proofs of new cases of the Hodge conjecture and of new results on the vanishing of the cohomology of some particular Shimura variety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Anderson, Theta functions and holomorphic differential forms on compact quotients of bounded symmetric domains, Duke Math. J. 50 (1983), 1137–1170.

    Article  MATH  MathSciNet  Google Scholar 

  2. N. Bergeron, Premier nombre de Betti et spectre du laplacien de certaines variétés hyperboliques, Enseign. Math. 46 (2000), 109–137.

    MATH  MathSciNet  Google Scholar 

  3. N. Bergeron, T. N. Venkataramana, A note on the rational structure of the cohomology ring of a Shimura variety, Note non publiée disponible sur http://www.math.jussieu.fr/∼bergeron.

  4. A. Borel, Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962), 485–535.

    Article  MathSciNet  Google Scholar 

  5. A. Borel, N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Princeton University Press, Princeton, NJ, 1980.

    MATH  Google Scholar 

  6. S. S. Chern, On a generalization of Kaehler geometry, in: Algebraic Geometry and Topology, A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, NJ, 1957, pp. 103–121.

    Google Scholar 

  7. L. Clozel, On the cohomology of Kottwitz’s arithmetic varieties, Duke Math. J. 72 (1993), 757–795.

    Article  MATH  MathSciNet  Google Scholar 

  8. L. Clozel, H. Oh, E. Ullmo, Hecke operators and equidistribution of Hecke points, Invent. Math. 144 (2001), 327–351.

    Article  MATH  MathSciNet  Google Scholar 

  9. L. Clozel, T. N. Venkataramana, Restriction of the holomorphic cohomology of a Shimura variety to a smaller Shimura variety, Duke Math. J. 95 (1998), 51–106.

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Deligne, Travaux de Shimura, in: Séminaire Bourbaki, 23ème année (1970/71), Lecture Notes in Mathematics, Vol. 244, Springer-Verlag, New York, 1971, pp. 123–165.

  11. W. Fulton, Young Tableaux, Cambridge University Press, Cambridge, 1997.

    MATH  Google Scholar 

  12. И. М. Гельфанд, М. И. Граев, И. И. Пятецкий-Шапиро, Теория представлеий и автоморфные функции, Наука, М., 1966. English transl.: I. M. Gelfand, M. I. Graev, I. I. Pyatetskii-Shapiro, Representation Theory and Automorphic Functions, Academic Press, New York, 1969.

  13. M. Harris, J. S. Li, A Lefschetz property for subvarieties of Shimura varieties, J. Algebraic Geom. 7 (1998), 77–122.

    MATH  MathSciNet  Google Scholar 

  14. R. Hotta, N. R. Wallach, On Matsushima’s formula for the Betti numbers of a locally symmetric space, Osaka J. Math. 12 (1975), 419–431.

    MATH  MathSciNet  Google Scholar 

  15. B. Kostant, Lie algebra cohomology and generalized Schubert cells, Ann. of Math. 77 (1963), 72–144.

    Article  MathSciNet  Google Scholar 

  16. S. Kumaresan, The canonical K-types of irreducible (\( \mathfrak{g} \), K)-modules with nonzero cohomology, Invent Math. 59 (1980), 1–11.

    Article  MATH  MathSciNet  Google Scholar 

  17. J.-S. Li, Nonvanishing theorems for the cohomology of certain arithmetic quotients, J. Reine Angew. Math. 428 (1992), 177–217.

    MATH  MathSciNet  Google Scholar 

  18. L. Manivel, Fonctions symétriques, polynômes de Schubert et lieux de dégénére-scence, Cours Spécialisés, Vol. 3, Société Mathématique de France, Paris, 1998.

  19. Y. Matsushima, A formula for the Betti numbers of compact locally symmetric Riemannian manifolds, J. Differential Geom. 1 (1967), 99–109.

    MATH  MathSciNet  Google Scholar 

  20. T. Oda, A note on the Albanese of an arithmetic quotient of the complex hyperball, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 481–486.

    MATH  MathSciNet  Google Scholar 

  21. R. Parthasarathy, Criteria for the unitarisability of some highest weight modules, Proc. Indian Acad. Sci. 89 (1980), 1–24.

    Article  MATH  Google Scholar 

  22. R. Parthasarathy, Holomorphic forms in Γ\G/K and Chern classes, Topology 21 (1982), 157–178.

    Article  MATH  MathSciNet  Google Scholar 

  23. В. Платонов, А. Рапинчук, Алгебраические группы и теория чисел, Наука, М., 1991. English transl.: V. Platonov, A. Rapinchuk, Algebraic Groups and Number Theory, Pure and Applied Mathematics, Vol. 139, Academic Press, Boston, MA, 1994.

  24. J. Rohlfs, Projective limits of locally symmetric spaces and cohomology, J. Reine Angew. Math. 479 (1996), 149–182.

    MATH  MathSciNet  Google Scholar 

  25. I. Satake, Holomorphic imbeddings of symmetric domains into Siegel space, Amer. J. Math. 87 (1965), 425–461.

    Article  MATH  MathSciNet  Google Scholar 

  26. T. N. Venkataramana, Abelianness of Mumford-Tate groups associated to some unitary groups, Compositio Math. 122 (2000), 223–242.

    Article  MATH  MathSciNet  Google Scholar 

  27. T. N. Venkataramana, Cohomology of compact locally symmetric spaces, Compositio Math. 125 (2001), 221–253.

    Article  MATH  MathSciNet  Google Scholar 

  28. T. N. Venkataramana, Some remarks on cycle classes on Shimura varieties, J. Ramanujan Math. Soc. 16 (2001), 309–322.

    MATH  MathSciNet  Google Scholar 

  29. T. N. Venkataramana, On cycles on compact locally symmetric varieties, Monatsh. Math. 135 (2002), 221–244.

    Article  MATH  MathSciNet  Google Scholar 

  30. D. Vogan, G. Zuckerman, Unitary representations with cohomology, Compositio Math. 53 (1984), 51–90.

    MATH  MathSciNet  Google Scholar 

  31. A. V. Zelevinsky, A generalization of the Littlewood-Richardson rule and the Robinson-Schensted-Knuth correspondence, J. Algebra 69 (1981), 82–94.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Bergeron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergeron, N. Restriction De La Cohomologie D’une Variété De Shimura à Ses Sous-variétés. Transformation Groups 14, 41–86 (2009). https://doi.org/10.1007/s00031-008-9047-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-008-9047-4

Keywords

Navigation