Skip to main content
Log in

Observable actions of algebraic groups

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let G be an affine algebraic group and let X be an affine algebraic variety. An action G × XX is called observable if for any G-invariant, proper, closed subset Y of X there is a nonzero invariant f\(\Bbbk\) [X]G such that f| Y = 0. We characterize this condition geometrically as follows. The action G × XX is observable if and only if:

  • (1) the action is stable, that is there exists a nonempty open subset UX consisting of closed orbits; and

  • (2) the field \(\Bbbk\)(X)G of G-invariant rational functions on X is equal to the quotient field of \(\Bbbk\)[X]G.

In case G is reductive, we conclude that there exists a unique, maximal, G-stable, closed subset X soc of X such that G × X socX soc is observable. Furthermore, the canonical map X soc//GX//G is bijective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bialynicki-Birula, On induced actions of algebraic groups, Ann. de l'Inst. Fourier 43 (1993), no. 2, 365–368.

    MATH  MathSciNet  Google Scholar 

  2. A. Bialynicki-Birula, G. Hochschild, G. D. Mostow, Extensions of representations of algebraic linear groups, Amer. J. Math. 85 (1963), 131–144.

    Article  MATH  MathSciNet  Google Scholar 

  3. W. Ferrer Santos, Closed conjugacy classes, closed orbits and structure of algebraic groups, Comm. Algebra 19 (1991), no. 12, 3241–3248.

    Article  MATH  MathSciNet  Google Scholar 

  4. W. Ferrer-Santos, A. Rittatore, Actions and Invariants of Algebraic Groups, Pure and Applied Math., Vol. 268, Dekker-CRC Press, Florida, 2005.

    MATH  Google Scholar 

  5. F. Grosshans, Localization and invariant theory, Adv. Math. 21 (1976), no. 1, 50–60.

    Article  MATH  MathSciNet  Google Scholar 

  6. F. Grosshans, Observable groups and Hilbert's fourteenth problem, Amer. J. Math. 95 (1973), 229–253.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Vol. 52, Springer-Verlag, New York, 1977. Russian transl.: Р. Хартсхорн, Алгебраuче-ская геомеmрuя, Мир, М., 1981.

  8. J. Igusa, Geometry of absolutely admissible representations, in: Number Theory, Algebraic Geometry and Commutative Algebra (in honor of Yasuo Akizuki), Kinokuniya, Tokyo, 1973, pp. 373–452.

  9. В. Л. Попов, Крumерuй сmабuльносmu для дейсmѳuя nолуnросmой груnnы на факmорuалъном многообраэuu, Иэв. АН СССР, сер. мат. 34 (1970), 523–531. Engl. transl.: V. L. Popov, Stability criterion for the action of a semisimple group on a factorial manifold, Math. USSR, Izv. 4 (1970), no. 3, 527–535.

  10. В. Л. Попов, О сmабuпьносmu дейсmѳuя алпебраuЧеской пруnnы на алпебраu-Ческом мнопообраэuu, Иэв. АН СССР, сер. мат. 36 (1972), 371–385. Engl. transl.: V. L. Popov, On the stability of the action of an algebraic group on an algebraic variety, Math. USSR, Izv. 6 (1972), 367–379 (1973).

    Google Scholar 

  11. В. Л. Попов, О эамкиуmосmu иекоmорых орбum алгебраuЧескuх груnn, Φункц. анал. и его прил. 31 (1997), no. 4, 76–79. Engl. transl.: V. L. Popov, On the closedness of some orbits of algebraic groups, Funct. Anal. Appl. 31 (1997), no. 4, 286–289 (1998).

    Google Scholar 

  12. В. Л. Попов, Замкнуmые орбumы борелеѳскuх nодгруnn, Мат. сб. 135(177) (1988), no. 3, 385–402. Engl. transl.: V. L. Popov, Closed orbits of Borel subgroups, Math. USSR, Sb. 63 (1989), no. 2, 375–392.

  13. Э. Б. Винберг, В. Л. Попов, Теорuя uнѳaрuaнmоѳ, Итоти науки и техн., Совр. пробл. матем., Φунд. направл., т. 55, М., ВИНИТИ, 1989, стр. 137–314. Engl. transl.: V. L. Popov, E. B. Vinberg, Invariant Theory, in: Algebraic Geometry IV, Enc. Math. Sci., Vol. 55, Springer, Berlin, 1994, pp. 123–284.

  14. M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math. 78 (1956), 401–443.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Rosenlicht, A remark on quotient spaces, An. Acad. Brasil. Ciénc. 35 (1963), 487–489.

    MathSciNet  Google Scholar 

  16. D. A. Timashev, Homogeneous Spaces and Equivariant Embeddings, to appear in the Encyclopædia of Mathematical Sciences, subseries Invariant Theory and Algebraic Transformation Groups, arXiv: math.AG/0602228.

  17. E. B. Vinberg, On stability of actions of reductive algebraic groups, in: Fong, Yuen et al. (eds.), Lie Algebras, Rings and Related Topics, Papers of the 2nd Tainan-Moscow International Algebra Workshop 1997, Tainan, Taiwan, January 11–17, 1997, Springer-Verlag, Hong Kong, 2000, pp. 188–202.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lex Renner.

Additional information

DOI: 10.1007/ S00031-

*Partially supported by a grant from NSERC.

**Partially supported by grants from IMU/CDE and NSERC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renner, L., Rittatore, A. Observable actions of algebraic groups. Transformation Groups 14, 985–999 (2009). https://doi.org/10.1007/s00031-009-9073-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-009-9073-x

Keywords

Navigation