Skip to main content
Log in

A categorical approach to Weyl modules

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Global and local Weyl modules were introduced via generators and relations in the context of affine Lie algebras in [CP2] and were motivated by representations of quantum affine algebras. In [FL] a more general case was considered by replacing the polynomial ring with the coordinate ring of an algebraic variety and partial results analogous to those in [CP2] were obtained. In this paper we show that there is a natural definition of the local and global Weyl modules via homological properties. This characterization allows us to define the Weyl functor from the category of left modules of a commutative algebra to the category of modules for a simple Lie algebra. As an application we are able to understand the relationships of these functors to tensor products, generalizing results in [CP2] and [FL]. We also analyze the fundamental Weyl modules and show that, unlike the case of the affine Lie algebras, the Weyl functors need not be left exact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Beck, H. Nakajima, Crystal bases and two-sided cells of quantum affine algebras, Duke Math. J. 123 (2004), no. 2, 335–402.

    MathSciNet  MATH  Google Scholar 

  2. N. Bourbaki, Groupes et Algèbres de Lie, Hermann, Paris, 1958.

    Google Scholar 

  3. V. Chari, Integrable representations of affine Lie algebras, Invent. Math. 85 (1986), 317–335.

    Article  MathSciNet  MATH  Google Scholar 

  4. V. Chari, On the fermionic formula and the Kirillov-Reshetikhin conjecture, Int. Math. Res. Not. 12 (2001), 629–654.

    Article  MathSciNet  Google Scholar 

  5. V. Chari, J. Greenstein, Current algebras, highest weight categories and quivers, Adv. Math. 216 (2007), no. 2, 811–840.

    Article  MathSciNet  MATH  Google Scholar 

  6. V. Chari, J. Greenstein, A family of Koszul algebras arising from finite-dimensional representations of simple Lie algebras, Adv. Math. 220 (2009), no 4, 1193–1221.

    Article  MathSciNet  MATH  Google Scholar 

  7. V. Chari, S. Loktev, Weyl, Demazure and fusion modules for the current algebra of sl r+1 , Adv. Math. 207 (2006), no. 2, 928–960.

    Article  MathSciNet  MATH  Google Scholar 

  8. V. Chari, A. Moura, The restricted Kirillov–Reshetikhin modules for the current and twisted current algebras, Comm. Math. Phys. 266 (2006), 431–454.

    Article  MathSciNet  MATH  Google Scholar 

  9. V. Chari, A. Pressley, New unitary representations of loop groups, Math. Ann. 275 (1986), 87–104.

    Article  MathSciNet  MATH  Google Scholar 

  10. V. Chari, A. Pressley, Weyl modules for classical and quantum affine algebras, Represent. Theory 5 (2001), 191–223 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Feigin, S. Loktev, Multi-dimensional Weyl modules and symmetric functions, Comm. Math. Phys. 251 (2004), 427–445.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Fourier, P. Littelmann, Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions, Adv. Math. 211 (2007), 566–593.

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Garland, The arithmetic theory of loop algebras, J. Algebra 53 (1978), 480–551.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York, 1968. Russian transl.: Дж. Хамфрис, Введение в теорию алгебр Ли и их представлений, МЦНМО, М., 2003.

    Google Scholar 

  15. M. Kashiwara, On level-zero representations of quantized affine algebras, Duke Math. J. 112 (2002), no. 1, 117–175.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Kumar, private correspondence.

  17. M. Lau, Representations of multi-loop algebras, to appear in Pacific J. Math., preprint arXiv:0811.2011v2.

  18. H. Nakajima, Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Amer. Math. Soc. 14 (2001), 145–238,

    Article  MathSciNet  MATH  Google Scholar 

  19. S. E. Rao, On representations of loop algebras, Comm. Algebra 21 (1993), 2131–2153.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyjayanthi Chari.

Additional information

Partially supported by the NSF grant DMS-0901253. (Vyjayanthi Chari)

Supported by the DFG-project “Kombinatorische Beschreibung von Macdonald und Kostka–Foulkes Polynomen”. (Ghislain Fourier)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chari, V., Fourier, G. & Khandai, T. A categorical approach to Weyl modules. Transformation Groups 15, 517–549 (2010). https://doi.org/10.1007/s00031-010-9090-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-010-9090-9

Keywords

Navigation