Skip to main content
Log in

Levi decompositions of a linear algebraic group

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

If G is a connected linear algebraic group over the field k, a Levi factor of G is a reductive complement to the unipotent radical of G. If k has positive characteristic, G may have no Levi factor, or G may have Levi factors which are not geometrically conjugate. In this paper we give some sufficient conditions for the existence and conjugacy of the Levi factors of G.

Let \( \mathcal{A} \) be a Henselian discrete valuation ring with fractions K and with perfect residue field k of characteristic p > 0. Let G be a connected and reductive algebraic group over K. Bruhat and Tits have associated to G certain smooth \( \mathcal{A} \) -group schemes \( \mathcal{P} \) whose generic fibers \( {{\mathcal{P}} \left/ {K} \right.} \) coincide with G; these are known as parahoric group schemes. The special fiber \( {{\mathcal{P}} \left/ {K} \right.} \) of a parahoric group scheme is a linear algebraic group over k. If G splits over an unramified extension of K, we show that \( {{\mathcal{P}} \left/ {K} \right.} \) has a Levi factor, and that any two Levi factors of \( {{\mathcal{P}} \left/ {K} \right.} \) are geometrically conjugate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Borel, Linear Algebraic Groups, 2nd ed., Graduate Texts in Mathematics, Vol. 126, Springer-Verlag, New York, 1991.

  2. A. Borel, T. A. Springer, Rationality properties of linear algebraic groups, II, Tôhoku Math. J. (2) 20 (1968), 443–497.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Borel, J. Tits, Groupes réductifs, Publ. Math. Inst. Hautes Études Sci. 27 (1965), 55–151. Russian transl.: Ж. Титс, Редукmцвные груnnы, сб Математика 11:1 (167), 43–111 и 11:2 (1967), 3–31.

  4. N. Bourbaki, Lie Groups and Lie algebras, Chaps. 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by A. Pressley.

  5. K. S. Brown, Cohomology of Groups, Graduate Texts in Mathematics, Vol. 87, Springer-Verlag, New York, 1994. Corrected reprint of the 1982 original.

  6. F. Bruhat, J. Tits, Groupes réductifs sur un corps local, Publ. Math. Inst. Hautes Études Sci. 41 (1972), 5–251.

    Article  MATH  MathSciNet  Google Scholar 

  7. F. Bruhat, J. Tits, Groupes réductifs sur un corps local, II, Schémas en groupes, Existence d'une donnée radicielle valuée, Publ. Math. Inst. Hautes Études Sci. 60 (1984), 197–376.

    Article  MathSciNet  Google Scholar 

  8. B. Conrad, O. Gabber, G. Prasad, Pseudo-Reductive Groups, New Mathematical Monographs, vol. 17, Cambridge University Press, Cambridge, 2010.

  9. M. Demazure, P. Gabriel, Groupes Algébriques, Tome I: Géométrie Algébrique, Généralités, Groupes Commutatifs, Masson, 1970.

  10. J. E. Humphreys, Existence of Levi factors in certain algebraic groups, Pacific J. Math. 23 (1967), 543–546.

    MATH  MathSciNet  Google Scholar 

  11. N. Jacobson, Lie Algebras, Dover, New York, 1979. Republication of the 1962 original. Russian transl.: Н. Джекобсон, Алвебры Лц, Мир, М., 1964.

  12. J. C. Jantzen, Representations of Algebraic Groups, 2nd ed., Mathematical Surveys and Monographs, Vol. 107, Amer. Math. Soc., Providence, RI, 2003.

  13. J. C. Jantzen, Low-dimensional representations of reductive groups are semi-simple, in: Algebraic Groups and Lie Groups, Australian Mathematical Society Lecture Series, Vol. 9, Cambridge University Press, Cambridge, 1997, pp. 255–266.

  14. G. J. McNinch, Faithful representations of SL2 over truncated Witt vectors, J. Algebra 265 (2003), no. 2, 606–618.

    Article  MATH  MathSciNet  Google Scholar 

  15. G. J. McNinch, Dimensional criteria for semisimplicity of representations, Proc. London Math. Soc. (3) 76 (1998), no. 1, 95–149.

    Article  MathSciNet  Google Scholar 

  16. J. Oesterlé, Nombres de Tamagawa et groupes unipotents en caractéristique p, Invent. Math. 78 (1984), no. 1, 13–88.

    Article  MATH  MathSciNet  Google Scholar 

  17. G. Prasad, Galois-fixed points in the Bruhat-Tits building of a reductive group, Bull. Soc. Math. France 129 (2001), no. 2, 169–174.

    MATH  MathSciNet  Google Scholar 

  18. G. Prasad, M. S. Raghunathan, Topological central extensions of semisimple groups over local fields, Ann. of Math. (2) 119 (1984), no. 1, 143–201.

    Article  MathSciNet  Google Scholar 

  19. M. Rosenlicht, Questions of rationality for solvable algebraic groups over non-perfect fields, Ann. Mat. Pura Appl. (4) 61 (1963), 97–120.

    MATH  MathSciNet  Google Scholar 

  20. G. Rousseau, Immeubles des groupes réductifs sur les corps locaux, Thèse, Université de Paris-Sud (1977).

  21. J.-P. Serre, Local Fields, Graduate Texts in Mathematics, Vol. 67, Springer-Verlag, New York, 1979. Translated from the French by M. J. Greenberg.

  22. J.-P. Serre, Galois Cohomology, Springer-Verlag, Berlin, 1997. Translated from the French by P. Ion and revised by the author. Russian transl.: Ж.-П. Серр, Ковомоловцц Галуа, Мир, М., 1968.

  23. J.-P. Serre, Algebraic Groups and Class Fields, Graduate Texts in Mathematics, Vol. 117, Springer-Verlag, New York, 1988. Translated from the French. Russian transl.: Ж. Серр, Алгебрацческце груnnы ц nоля классов, Мир, М., 1968.

  24. T. A. Springer, Linear Algebraic Groups, 2nd ed., Progress in Mathematics, Vol. 9, Birkhäuser, Boston, 1998.

  25. J. Tits, Reductive groups over local fields, in: Automorphic Forms, Representations and L-Functions (Proc. Sympos. Pure Math., Oregon State University, Corvallis, OR, 1977), Part 1, Proc. Sympos. Pure Math., Vol. XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 29–69.

  26. C. A. Weibel, An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, Vol. 38, Cambridge University Press, Cambridge, 1994.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George J. Mcninch.

Additional information

Dedicated to the memory of Vladimir Morozov and to his contributions to mathematics

Research of the author was supported in part by the US NSA award H98230-08-1-0110.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mcninch, G.J. Levi decompositions of a linear algebraic group. Transformation Groups 15, 937–964 (2010). https://doi.org/10.1007/s00031-010-9111-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-010-9111-8

Keywords

Navigation