Skip to main content
Log in

Gradings of positive rank on simple Lie algebras

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We complete the classification of positive rank gradings on Lie algebras of simple algebraic groups over an algebraically closed field k whose characteristic is zero or not too small, and we determine the little Weyl groups in each case. We also classify the stable gradings and prove Popov’s conjecture on the existence of a Kostant section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Bhargava, A. Shankar, Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves, arXiv:1006.1002 (2010).

  2. M. Bhargava, A. Shankar, Ternary cubic forms having bounded invariants and the existence of a positive proportion of elliptic curves having rank 0, arXiv:1007.0052 (2010).

  3. A. Borel, Properties and linear representations of Chevalley groups, in: Seminar in Algebraic Groups and Related Finite Groups, Lecture Notes in Mathematics, Vol. 131, Springer-Verlag, Berlin, 1970, pp. 1–55. Russian transl.: Семинар по алгебраическим группам, Мир, M., 1973.

    Chapter  Google Scholar 

  4. A. Borel, Automorphic L-functions, in: Automorphic Forms, Representations, and L-Funsctions, Proc. Symp. Pure Math., Vol. 33, Part 2, Amer. Math. Soc., Providence, RI, 1979, pp. 27–61.

  5. A. Borel, Linear Algebraic Groups, 2nd ed., Graduate Texts in Mathematics, Vol. 126, Springer-Verlag, New York, 1991.

    Book  MATH  Google Scholar 

  6. N. Bourbaki, Lie Groups and Lie Algebras, Springer-Verlag, Berlin, 2002.

    Book  MATH  Google Scholar 

  7. R. Carter, Conjugacy classes in the Weyl group, Compositio Math. 25 (1972), 1–59.

    MathSciNet  MATH  Google Scholar 

  8. W. de Graaf, Computing representatives of nilpotent orbits of θ-groups, J. Symb. Comput. 46 (2011), 438–458.

    Article  MATH  Google Scholar 

  9. W. de Graaf, O. Yakimova, Good index behaviour of θ-representations, I, Algebr. Represent. Theory 15 (2012), no. 4, 613–638.

    Article  MathSciNet  Google Scholar 

  10. B. Gross, On Bhargava’s representations and Vinberg’s invariant theory, Frontiers of Mathematical Sciences, International Press (2011), 317–321.

  11. B. Gross, M. Reeder, Arithmetic invariants of discrete Langlands parameters, Duke Math. J. 154 (2010), 431–508.

    Article  MathSciNet  MATH  Google Scholar 

  12. V. Kac, Infinite Dimensional Lie Algebras, 3rd ed., Cambridge, 1995.

  13. D. Kazhdan, G. Lusztig, Fixed point varieties on affine flag manifolds, Israel J. Math. 62 (1988), 129–168.

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973–1032.

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Kostant, Groups over \( \mathbb{Z} \), in: Algebraic Groups and Discontinuous Subgroups, Proc. Symp. Pure Math., Vol. 9, Amer. Math. Soc., Providence, RI, 1966, pp. 71–83.

    Google Scholar 

  16. B. Kostant, S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753–809.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Kumar, G. Lusztig, D. Prasad, Characters of simplylaced nonconnected groups verus characters of nonsimplylaced connected groups, Contemp. Math. 478 (2009), 99–101.

    Article  MathSciNet  Google Scholar 

  18. P. Levy, Involutions of reductive Lie algebras in positive characteristic, Adv. Math. 210 (2007), no. 2, 505–559.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Levy, Vinberg’s θ-groups in positive characteristic and Kostant–Weierstrass slices, Transform. Groups 14 (2009), no. 2, 417–461.

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Levy, KW-sections for exceptional type Vinberg’s θ-groups, arXiv:0805.2064 (2010).

  21. I. G. Macdonald, Affine Hecke Algebras and Orthogonal Polynomials, Cambridge Tracts in Mathematics, Vol. 157, Cambridge University Press, Cambridge, 2003.

    Book  MATH  Google Scholar 

  22. D. Mumford, Stability of projective varieties, L’Enseign. Math. 23(1) (1977), 39–110.

    MathSciNet  MATH  Google Scholar 

  23. D. Panyushev, On invariant theory of θ-groups, J. Algebra 283 (2005), 655–670.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Reeder, Torsion automorphisms of simple Lie algebras, L’Enseign. Math. 56(2) (2010), 3–47.

    MathSciNet  MATH  Google Scholar 

  25. M. Reeder, Elliptic centralizers in Weyl groups and their coinvariant representations, Represent. Theory 15 (2011), 63–111.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Reeder, J.-K. Yu, Epipelagic representations and invariant theory, preprint, 2012.

  27. J.-P. Serre, Coordonnées de Kac, Oberwolfach Reports 3 (2006), 1787–1790.

    Google Scholar 

  28. G. C. Shephard, J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274–304.

    Article  MathSciNet  MATH  Google Scholar 

  29. N. Spaltenstein, On the Kazhdan–Lusztig map for exceptional Lie algebras, Adv. Math. 83 (1990), 48–74.

    Article  MathSciNet  MATH  Google Scholar 

  30. T. A. Springer, Regular elements in finite reflection groups, Invent. Math. 25 (1974), 159–198.

    Article  MathSciNet  MATH  Google Scholar 

  31. R. Steinberg, Variations on a theme of Chevalley, Pacific J. Math. 9 (1959), no. 3, 875–891.

    MathSciNet  MATH  Google Scholar 

  32. R. Steinberg, Regular elements of semisimple algebraic groups, Publ. Math. Inst. Hautes Études Sci. 25 (1965), 49–80.

    Article  Google Scholar 

  33. R. Steinberg, Lectures on Chevalley groups, Yale Lecture Notes, 1967. Russian transl.: Р. Стейнберг, Лекции о группах Шевалле, Мир, M., 1975.

  34. R. Steinberg, Endomorphisms of Linear Algebraic Groups, Mem. Amer. Math. Soc., Vol. 80, American Mathematical Society, Providence, RI, 1968.

    Google Scholar 

  35. R. Steinberg, Torsion in reductive groups, Adv. in Math. 15 (1975), 63–92.

    Article  MATH  Google Scholar 

  36. Э. Б. Винберг, Группа Вейля градуированной алгебры Ли, Изв. АН СССР, сер. мат. 40 (1976), no. 3, 488–526. Engl. transl.: E. B. Vinberg, The Weyl group of a graded Lie algebra, Math. USSR-Izv. 10 (1977), 463–495.

    Article  MATH  Google Scholar 

  37. W. C. Waterhouse, Introduction to Affine Group Schemes, Springer-Verlag, New York, 1979.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Reeder.

Additional information

Supported by NSF grants DMS-0801177 and DMS-0854909. (Mark Reeder)

Supported by NSF grant DMS-0854909. (Jiu-Kang Yu)

Supported by NSF grant DMS-0901102. (Benedict H. Gross)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reeder, M., Levy, P., Yu, JK. et al. Gradings of positive rank on simple Lie algebras. Transformation Groups 17, 1123–1190 (2012). https://doi.org/10.1007/s00031-012-9196-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-012-9196-3

Keywords

Navigation