Skip to main content
Log in

𝔾a-ACTIONS ON AFFINE CONES

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

An affine algebraic variety X is called cylindrical if it contains a principal Zariski dense open cylinder U ≃ Z × A1. A polarized projective variety (Y, H) is called cylindrical if it contains a cylinder U = Y \ supp D, where D is an effective Q-divisor on Y such that [D] ∈ Q+[H] in PicQ(Y ). We show that cylindricity of a polarized projective variety is equivalent to that of a certain Veronese affine cone over this variety. This gives a criterion of the existence of a unipotent group action on an affine cone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Altmann, J. Hausen, Polyhedral divisors and algebraic torus actions. Math. Ann. 334 (2006), 557–607.

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Bourbaki, Commutative Algebra, Chap. 1–7, Springer-Verlag, Berlin, 1998.

    Google Scholar 

  3. M. Brion, R. Joshua, Notions of purity and the cohomology of quiver moduli. Int. J. Math. 23 (2012), 1250097, 30 p.

    MathSciNet  Google Scholar 

  4. I. Cheltsov, J. Park, J. Won, Affine cones over smooth cubic surfaces, arXiv: 1303.2648 (2013).

  5. D. Daigle, Tame and wild degree functions. Osaka J. Math. 49 (2012) 53–80.

    MathSciNet  MATH  Google Scholar 

  6. M. Demazure, Anneaux gradués normaux. Introduction à la théorie des singularités, II, 35–68, Travaux en Cours, 37, Hermann, Paris, 1988.

  7. I. Dolgachev, McKay correspondence. Winter 2006/07, available at: http://www.math.lsa.umich.edu/∼idolga/lecturenotes.html.

  8. H. Flenner, Rationale quasihomogene Singularitäten, Arch. Math. 36 (1981), 35–44.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Flenner, M. Zaidenberg, Log-canonical forms and log canonical singularities, Math. Nachr. 254/255 (2003), 107–125.

    Article  MathSciNet  Google Scholar 

  10. H. Flenner, M. Zaidenberg, Rational curves and rational singularities, Math. Zeitschrift 244 (2003), 549–575.

    MathSciNet  MATH  Google Scholar 

  11. H. Flenner, M. Zaidenberg, Normal affine surfaces with∗−actions, Osaka J. Math. 40 (2003), 981–1009.

    MathSciNet  MATH  Google Scholar 

  12. H. Flenner, M. Zaidenberg, Locally nilpotent derivations on affine surfaces with a∗−action, Osaka J. Math. 42 (2005), 931–974.

    MathSciNet  MATH  Google Scholar 

  13. G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations, Encyclopaedia of Mathematical Sciences, Vol.136, Subseries Invariant Theory and Algebraic Transformation Groups, Vol. VII, Springer-Verlag, Berlin, 2006.

    Google Scholar 

  14. A. Grothendieck, Éléments de Géométrie Algébrique. Publ. Math. IHES 8 (1961).

  15. R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977. Russian transl.: P. Xaртсхорн АлгeбраuҷeскаЯ геометриЯ, Мир, 1981.

  16. R. Källström, Liftable derivations for generically separably algebraic morphisms of schemes. Trans. Amer. Math. Soc. 361 (2009), 495–523.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Kishimoto, Y. Prokhorov, M. Zaidenberg, Group actions on affine cones, in: Affine Algebraic Geometry: The Russell Festschrift, CRM Proc. Lecture Notes, Vol. 54, American Mathematical Society, Providence, RI, 2011, pp. 123–163.

  18. T. Kishimoto, Y. Prokhorov, M. Zaidenberg, Affine cones over Fano threefolds and additive group actions, to appear in Osaka J. Math., arXiv:1106.1312.

  19. T. Kishimoto, Y. Prokhorov, M. Zaidenberg, Unipotent group actions on del Pezzo cones, to appear in Alg. Geom., arXiv:1212.4479.

  20. A. Liendo, Affine 𝕋-varieties of complexity one and locally nilpotent derivations. Transform. Groups 15 (2010), 389–425.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Liendo, 𝔾 a -actions of fiber type on affine 𝕋-varieties. J. Algebra 324 (2010), 3653–3665.

    Article  MathSciNet  MATH  Google Scholar 

  22. K. Masuda, M. Miyanishi, Lifting of the additive group scheme actions, Tohoku Math. J. (2) 61 (2009), no. 2, 267–286.

  23. ю. Прохоров, К проблеме Разложениоя Зариского Труды МИАН 240 (2003), 43–72. Engl. transl.: Y. Prokhorov, On Zariski decomposition problem, Proc. Steklov Inst. Math. 240 (2003), 37–65.

  24. R. Rentschler, Opérations du groupe additif sur le plane affine, C. R. Acad. Sci. 267 (1968), 384–387.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TAKASHI KISHIMOTO.

Additional information

(TAKASHI KISHIMOTO) Partially supported by a Grant-in-Aid for Scientific Research of JSPS, No. 24740003.

(YURI PROKHOROV) Partially supported by RFBR grant No. 11-01-00336-a, the grant of Leading Scientific Schools No. 4713.2010.1, Simons-IUM fellowship, and AG Laboratory SU-HSE, RF government grant ag. 11.G34.31.0023.

Rights and permissions

Reprints and permissions

About this article

Cite this article

KISHIMOTO, T., PROKHOROV, Y. & ZAIDENBERG, M. 𝔾a-ACTIONS ON AFFINE CONES. Transformation Groups 18, 1137–1153 (2013). https://doi.org/10.1007/s00031-013-9246-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-013-9246-5

Keywords

Navigation