Skip to main content
Log in

Riemann problem for the isentropic relativistic Chaplygin Euler equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper studies the Riemann problem of the isentropic relativistic Euler equations for a Chaplygin gas. The solutions exactly include five kinds. The first four consist of different contact discontinuities while the rest involves delta-shock waves. Under suitable generalized Rankine–Hugoniot relation and entropy condition, the existence and uniqueness of delta-shock solutions are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liang E.: Relativistic simple waves: shock damping and entropy production. Astrophys. J. 211, 361–376 (1977)

    Article  Google Scholar 

  2. Taub A.: Approximate solutions of the Einstein equations for isentropic motions of plane-symmetric distributions of perfect fluids. Phys. Rev. 107, 884–900 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  3. Pant V.: Global entropy solutions for isentropic relativistic fluid dynamics. Commun. Partial Differ. Equ. 21, 1609–1641 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen G., LeFloch P.: Compressible Euler equations with general pressure law. Arch. Rational Mech. Anal. 153, 221–259 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen G., LeFloch P.: Existence theory for the isentropic Euler equations. Arch. Rational Mech. Anal. 166, 81–98 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen G., Li Y.: Relativistic Euler equations for isentropic fluids: stability of Riemann solutions with large oscillation. Z. Angew. Math. Phys. 55, 903–926 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li Y., Shi Q.: Global existence of the entropy solutions to the isentropic relativistic Euler equations. Comm. Pure Appl. Anal. 4, 763–778 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li Y., Geng Y.: Global limits of entropy solutions to isentropic relativistic Euler equations. Z. Angew. Math. Phys. 57, 960–983 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang, T., Hsiao, L.: The Riemann problem and interaction of waves in gas dynamics. Longman Scientific and Technical, Pitman Monographs and Surveys in Pure and Applied Mathematics, No.41. Essex (1989)

  10. Chaplygin S.: On gas jets. Sci. Mem. Moscow Univ. Math. Phys. 21, 1–121 (1904)

    Google Scholar 

  11. Tsien H.: Two dimensional subsonic flow of compressible fluids. J. Aeron. Sci. 6, 399–407 (1939)

    MathSciNet  Google Scholar 

  12. von Karman T.: Compressibility effects in aerodynamics. J. Aeron. Sci. 8, 337–365 (1941)

    MATH  Google Scholar 

  13. Setare M.: Interacting holographic generalized Chaplygin gas model. Phys. Lett. B 654, 1–6 (2007)

    Article  Google Scholar 

  14. Cruz N., Lepe S., Pen̈a F.: Dissipative generalized Chaplygin gas as phantom dark energy physics. Phys. Lett. B 646, 177–182 (2007)

    Article  Google Scholar 

  15. Setare M.: Holographic Chaplygin gas model. Phys. Lett. B 648, 329–332 (2007)

    Article  Google Scholar 

  16. Bilic, N., Tupper, G., Viollier, R.: Dark Matter, Dark Energy and the Chaplygin Gas. arXiv:astro-ph/0207423

  17. Gorini, V., Kamenshchik, A., Moschella, U., Pasquier, V.: The Chaplygin Gas as a Model for Dark Energy. arXiv:gr-qc/040362

  18. Brenier Y.: Solutions with concentration to the Riemann problem for one-dimensional Chaplygin gas equations. J. Math. Fluid Mech. 7, S326–S331 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guo L., Sheng W., Zhang T.: The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system. Commun. Pure Appl. Anal. 9, 431–458 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tan D., Zhang T.: Two-dimensional Riemann problem for a hyperbolic system of nonlinear conservation laws (I) Four-J cases. J. Differ. Equ. 111, 203–254 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tan D., Zhang T., Zheng Y.: Delta shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws. J. Differ. Equ. 112(1), 1–32 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Keyfit B., Kranzer H.: Spaces of weighted measures for conservation laws with singular shock solutions. J. Differ. Equ. 118, 420–451 (1995)

    Article  Google Scholar 

  23. Sheng W., Zhang T.: The Riemann problem for transportation equation in gas dynamics. Mem. Am. Math. Soc. 137(654), 1–77 (1999)

    MathSciNet  Google Scholar 

  24. Li, J., Zhang, T.: Generalized Rankine–Hugoniot relations of delta shocks in solutions of transportation equations. In: Chen G.-Q. et al. (eds.) Advances in Nonlinear Partial Differential Equations and Related Areas (Beijing, 1997), pp: 219–232. World Scientific publishing, River Edge (1998)

  25. Yang H.: Riemann problems for a class of coupled hyperbolic systems of conservation laws. J. Differ. Equ. 159, 447–484 (1999)

    Article  MATH  Google Scholar 

  26. Chen G., Liu H.: Formation of delta-shocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations. SIAM J. Math. Anal. 34, 925–938 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen G., Liu H.: Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids. Physica D 189, 141–165 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Danilov V., Shelkovich V.: Dynamics of propagation and interaction of δ-shock waves in conservation laws systems. J. Differ. Equ. 221, 333–381 (2005)

    Article  MathSciNet  Google Scholar 

  29. Shelkovich V.: The Riemann problem admitting δ, δ′-shocks, and vacuum states (the vanishing viscosity approach). J. Differ. Equ. 231, 459–500 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Cheng H., Yang H.: Delta shock waves in chromatography equations. J. Math. Anal. Appl. 380, 475–485 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Cheng H., Yang H.: Delta shock waves as limits of vanishing viscosity for 2-D steady pressureless isentropic flow. Acta Appl. Math. 113, 323–348 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lax P.: Hyperbolic system of conservation laws II. Comm. Pure Appl. Math. 10, 537–566 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li J., Li W.: Riemann problem for the zero-pressure flow in gas dynamics. Prog. Nat. Sci. 11, 331–344 (2001)

    Google Scholar 

  34. Li Z., Sheng W.: The Riemann problem of adiabatic Chaplygin gas dynamic system. Commun. Appl. Math. Comput. 24, 9–16 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Cheng H., Yang H., Zhang Y.: Riemann problem for the Chaplygin Euler equations of compressible fluid flow. Int. J. Nonlinear Sci. Num. 11, 985–992 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Cheng.

Additional information

Supported by NNSF of China (Grant No.10961025) and Science Foundation of the Education Department of Yunnan Province (Grant No.2010Y440). This work is also supported by IRTSTYN and Scientific Research Foundation of Yunnan University (Grant No. 2011YB30).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, H., Yang, H. Riemann problem for the isentropic relativistic Chaplygin Euler equations. Z. Angew. Math. Phys. 63, 429–440 (2012). https://doi.org/10.1007/s00033-012-0199-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-012-0199-7

Mathematics Subject Classification (2010)

Keywords

Navigation