Skip to main content
Log in

An Infinite Presentation of the Torelli Group

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

In this paper, we construct an infinite presentation of the Torelli subgroup of the mapping class group of a surface whose generators consist of the set of all “separating twists”, all “bounding pair maps”, and all “commutators of simply intersecting pairs” and whose relations all come from a short list of topological configurations of these generators on the surface. Aside from a few obvious ones, all of these relations come from a set of embeddings of groups derived from surface groups into the Torelli group. In the process of analyzing these embeddings, we derive a novel presentation for the fundamental group of a closed surface whose generating set is the set of all simple closed curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Armstrong M.A. (1965) On the fundamental group of an orbit space. Proc. Cambridge Philos. Soc. 1: 639–646

    Article  MathSciNet  Google Scholar 

  2. B. van den Berg, On the Abelianization of the Torelli group, Thesis, University of Utrecht, 2003.

  3. Birman J.S. (1969) Mapping class groups and their relationship to braid groups. Comm. Pure Appl. Math. 22: 213–238

    Article  MathSciNet  MATH  Google Scholar 

  4. Birman J.S. (1971) On Siegel’s modular group. Math. Ann. 191: 59–68

    Article  MathSciNet  MATH  Google Scholar 

  5. J.S. Birman, Braids, Links, and Mapping Class Groups, Ann. of Math. Stud. 82, Princeton Univ. Press, Princeton, NJ, 1974.

  6. T. Brendle, The Torelli Group and Representations of Mapping Class Groups, Thesis, Columbia University, 2002.

  7. Brown K.S. (1984) Presentations for groups acting on simply-connected complexes. J. Pure Appl. Algebra 32(1): 1–10

    Article  MathSciNet  MATH  Google Scholar 

  8. Charney R. (1987) A generalization of a theorem of Vogtmann. J. Pure Appl. Algebra 44(1-3): 107–125

    Article  MathSciNet  MATH  Google Scholar 

  9. Coxeter H.S.M. (1973) Regular Polytopes, Third edition. Dover, New York

    Google Scholar 

  10. Gervais S. (1996) Presentation and central extensions of mapping class groups. Trans. Amer. Math. Soc. 348(8): 3097–3132

    Article  MathSciNet  MATH  Google Scholar 

  11. Hain R. (1997) Infinitesimal presentations of the Torelli groups. J. Amer. Math. Soc. 10(3): 597–651

    Article  MathSciNet  MATH  Google Scholar 

  12. Hall P. (1934) A contribution to the theory of groups of primer-power order. Proc. London Math. Soc. (2) 36: 29–95

    Article  Google Scholar 

  13. Harer J.L. (1985) Stability of the homology of the mapping class groups of orientable surfaces. Ann. of Math. (2) 121(2): 215–249

    Article  MathSciNet  Google Scholar 

  14. W.J. Harvey, Geometric structure of surface mapping class groups, in “Homological Group Theory (Proc. Sympos. Durham, 1977)”, London Math. Soc. Lecture Note Ser. 36, Cambridge Univ. Press, Cambridge-New York (1979), 255–269.

  15. Johnson D.L. (1979) Homeomorphisms of a surface which act trivially on homology. Proc. Amer. Math. Soc. 75(1): 119–125

    Article  MathSciNet  MATH  Google Scholar 

  16. Johnson D. (1980) Conjugacy relations in subgroups of the mapping class group and a group-theoretic description of the Rochlin invariant. Math. Ann. 249(3): 243–263

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Johnson, A survey of the Torelli group, in “Low-Dimensional Topology (San Francisco, Calif., 1981)” Contemp. Math. 20, Amer. Math. Soc., Providence, RI (1983), 165–179.

  18. D. Johnson, The structure of the Torelli group. I. A finite set of generators for \({\mathcal {I}}\) , Ann. of Math. (2) 118:3 (1983), 423–442.

    Google Scholar 

  19. Johnson D. (1985) The structure of the Torelli group. II. A characterization of the group generated by twists on bounding curves. Topology 24(2): 113–126

    Article  MathSciNet  MATH  Google Scholar 

  20. Krstić S., McCool J. (1997) The non-finite presentability of IA(F 3) and GL2(Z[t, t −1]). Invent. Math. 129(3): 595–606

    Article  MathSciNet  MATH  Google Scholar 

  21. Luo F. (1997) A presentation of the mapping class groups. Math. Res. Lett. 4(5): 735–739

    MathSciNet  MATH  Google Scholar 

  22. H. Maazen, Homology Stability for the General Linear Group, thesis, University of Utrecht, 1979.

  23. W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory: Presentations of groups in Terms of Generators and Relations, Interscience Publishers [John Wiley & Sons, Inc.], New York, 1966.

  24. D. Margalit, J. McCammond, Geometric presentations for the pure braid group, J. Knot Theory Ramifications, to appear.

  25. McCullough D., Miller A. (1986) The genus 2 Torelli group is not finitely generated. Topology Appl. 22(1): 43–49

    Article  MathSciNet  MATH  Google Scholar 

  26. Mess G. (1992) The Torelli groups for genus 2 and 3 surfaces. Topology 31(4): 775–790

    Article  MathSciNet  MATH  Google Scholar 

  27. Morita S., Penner R.C. (2008) Torelli groups, extended Johnson homomorphisms, and new cycles on the moduli space of curves. Math. Proc. Cambridge Philos. Soc. 144(3): 651–671

    Article  MathSciNet  MATH  Google Scholar 

  28. Paris L., Rolfsen D. (2000) Geometric subgroups of mapping class groups. J. Reine Angew. Math. 521: 47–83

    Article  MathSciNet  MATH  Google Scholar 

  29. Powell J. (1978) Two theorems on the mapping class group of a surface. Proc. Amer. Math. Soc. 68(3): 347–350

    Article  MathSciNet  MATH  Google Scholar 

  30. Putman A. (2007) Cutting and pasting in the Torelli group. Geom. Topol. 11: 829–865

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Putman, Finding presentations from group actions without making choices, preprint 2008.

  32. Rourke C.P., Sanderson B.J. (1982) Introduction to Piecewise-Linear Topology, Reprint. Springer, Berlin

    Google Scholar 

  33. Spanier E.H. (1981) Algebraic Topology, Corrected reprint. Springer, New York

    Google Scholar 

  34. Tomaszewski W. (2003) A basis of Bachmuth type in the commutator subgroup of a free group. Canad. Math. Bull. 46(2): 299–303

    Article  MathSciNet  MATH  Google Scholar 

  35. Zeeman E.C. (1964) Relative simplicial approximation. Proc. Cambridge Philos. Soc. 60: 39–43

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Putman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Putman, A. An Infinite Presentation of the Torelli Group. Geom. Funct. Anal. 19, 591–643 (2009). https://doi.org/10.1007/s00039-009-0006-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-009-0006-6

Keywords and phrases

2000 Mathematics Subject Classification

Navigation