Skip to main content
Log in

Hardy Spaces, Singular Integrals and The Geometry of Euclidean Domains of Locally Finite Perimeter

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We study the interplay between the geometry of Hardy spaces and functional analytic properties of singular integral operators (SIO’s), such as the Riesz transforms as well as Cauchy–Clifford and harmonic double-layer operator, on the one hand and, on the other hand, the regularity and geometric properties of domains of locally finite perimeter. Among other things, we give several characterizations of Euclidean balls, their complements, and half-spaces, in terms of the aforementioned SIO’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chavel I.: Isoperimetric Inequalities, Cambridge Univ. Press, Cambridge (2001)

    Google Scholar 

  2. Coifman R., McIntosh A., Meyer Y.: L’intégrale de Cauchy definit un opérateur borné ur L 2 pour les courbes lipschitziennes. Ann. Math. 116, 361–388 (1982)

    Article  MathSciNet  Google Scholar 

  3. R. Coifman, Y. Meyer, Le théorème de Calderón par les “méthodes de variable réelle”, C.R. Acad. Sci. Paris Sér. A-B 289:7 (1979), A425–A428.

  4. David G.: Courbes corde-arc et espaces de Hardy généralisés. Ann. Inst. Fourier (Grenoble) 32(3), 227–239 (1982)

    MATH  MathSciNet  Google Scholar 

  5. David G., Jerison D.: Lipschitz approximation to hypersurfaces, harmonic measure, and singular integrals. Indiana Univ. Math. J. 39(3), 831–845 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. G. David, S. Semmes, Singular Integrals and Rectifiable Sets in \({\mathbb{R}^{n}}\) : Beyond Lipschitz Graphs, Astérisque 193 (1991).

  7. G. David, S. Semmes, Analysis of and on Uniformly Rectifiable Sets, Mathematical Surveys and Monographs, AMS Series, 1993.

  8. Evans L.C., Gariepy R.F.: Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992)

    Google Scholar 

  9. H. Federer, Geometric Measure Theory, reprint of the 1969 edition, Springer-Verlag, 1996.

  10. S. Hofmann, M. Mitrea, M. Taylor, Singular integrals and elliptic boundary problems on regular Semmes–Kenig–Toro domains, preprint (2007).

  11. Hofmann S., Mitrea M., Taylor M.: Geometric and transformational properties of Lipschitz domains, Semmes–Kenig–Toro domains, and other classes of finite perimeter domains. J. Geom. Anal. 17(4), 593–647 (2007)

    MATH  MathSciNet  Google Scholar 

  12. Hurwitz A.: Sur le problème des isopérimétres. C.R. Acad. Sci. Paris 132, 401–403 (1901)

    Google Scholar 

  13. A. Hurwitz, Sur quelque applications géométrique des séries Fourier, Ann. Sci. École Norm. Sup. (3) 19 (1902), 357–408.

    Google Scholar 

  14. Jerison D.S., Kenig C.E.: Boundary behavior of harmonic functions in nontangentially accessible domains. Adv. in Math. 46(1), 80–147 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kenig C.E., Toro T.: Free boundary regularity for harmonic measures and Poisson kernels. Ann. of Math. 150(2), 369–454 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. C.E. Kenig, T. Toro, Poisson kernel characterization of Reifenberg flat chord arc domains, Ann. Sci. École Norm. Sup., (4) 36:3 (2003), 323–401.

    Google Scholar 

  17. N. Kerzman, Singular integrals in complex analysis, in “Harmonic Analysis in Euclidean Spaces”, Proc. Sympos. Pure Math., XXXV, Part 2, Amer. Math. Soc., Providence, R.I. (1979), 3–41.

  18. Kerzman N., Stein E.M.: The Cauchy kernel, the Szegó kernel, and the Riemann mapping function. Math. Ann. 236(1), 85–93 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  19. J. Král, D. Medková, On the Neumann–Poincaré operator, Czechoslovak Math. J. 48(123):4 (1998), 653–668

    Google Scholar 

  20. Lanzani L., Stein E.M.: Szegó and Bergman projections on non-smooth planar domains. J. Geom. Anal. 14(1), 63–86 (2004)

    MATH  MathSciNet  Google Scholar 

  21. Lawson B., Michelson M.: Spin Geometry. Princeton Univ. Press, Princeton, N.J. (1989)

    MATH  Google Scholar 

  22. Lim M.: Symmetry of a boundary integral operator and a characterization of a ball. Illinois J. Math. 45(2), 537–543 (2001)

    MATH  MathSciNet  Google Scholar 

  23. Maggi F.: Some methods for studying stability in isoperimetric type problems. Bull. Amer. Math. Soc. 45, 367–408 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Martensen E.: Eine Integralgleichung für die logarithmische Gleichgewichtsbelegung und die Krümmung der Randkurve eines ebenen Gebiets, Bericht über die Wissenschaftliche Jahrestagung der GAMM. Z. Angew. Math. Mech. 72(6), T596–T599 (1992)

    MathSciNet  Google Scholar 

  25. Mendez O., Reichel W.: Electrostatic characterization of spheres. Forum Math. 12(2), 223–245 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. M. Mitrea, Clifford Wavelets, Singular Integrals, and Hardy Spaces, Springer Lecture Notes in Mathematics 1575, (1994).

  27. Payne L.E., Philippin G.A.: On some maximum principles involving harmonic functions and their derivatives. SIAM J. Math. Anal. 10(1), 96–104 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  28. Philippin G.A.: On a free boundary problem in electrostatics. Math. Methods Appl. Sci. 12(5), 387–392 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  29. Reichel W.: Radial symmetry for elliptic boundary-value problems on exterior domains. Arch. Rational Mech. Anal. 137(4), 381–394 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  30. Reichel W.: Radial symmetry for an electrostatic, a capillarity and some fully nonlinear overdetermined problems on exterior domains. Z. Anal. Anwendungen 15(3), 619–635 (1996)

    MATH  MathSciNet  Google Scholar 

  31. Semmes S.: Chord-arc surfaces with small constant. I. Adv. Math. 85(2), 198–223 (1991)

    MATH  MathSciNet  Google Scholar 

  32. Van Lancker P.: The Kerzman–Stein theorem on the sphere. Complex Variables Theory Appl. 45(1), 73–99 (2001)

    MATH  MathSciNet  Google Scholar 

  33. J. Wermer, Potential Theory, Springer Lecture Notes in Mathematics 408 (1974).

  34. Ziemer W.: Weakly Differentiable Functions. Springer-Verlag, New York (1989)

    MATH  Google Scholar 

  35. M. Zinsmeister, Domaines de Lavrentiev, Publications Mathématiques d’Orsay, 85-3. Université de Paris-Sud, Département de Mathématiques, Orsay, 1985.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Hofmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmann, S., Marmolejo-Olea, E., Mitrea, M. et al. Hardy Spaces, Singular Integrals and The Geometry of Euclidean Domains of Locally Finite Perimeter. Geom. Funct. Anal. 19, 842–882 (2009). https://doi.org/10.1007/s00039-009-0015-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-009-0015-5

Keywords and phrases

2000 Mathematics Subject Classification

Navigation