Skip to main content
Log in

Differential Harnack Estimates for Time-Dependent Heat Equations with Potentials

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

In this paper, we prove a differential Harnack inequality for positive solutions of time-dependent heat equations with potentials. We also prove a gradient estimate for the positive solution of the time-dependent heat equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrews B. (1994) Harnack inequalities for evolving hypersurfaces. Math. Z. 217(2): 179–197

    Article  MATH  MathSciNet  Google Scholar 

  2. Cao H.-D. (1992) On Harnack’s inequalities for the Kähler–Ricci flow. Invent. Math. 109(2): 247–263

    Article  MATH  MathSciNet  Google Scholar 

  3. Cao H.-D., Ni L. (2005) Matrix Li–Yau–Hamilton estimates for the heat equation on Kähler manifolds. Math. Ann. 331(4): 795–807

    Article  MATH  MathSciNet  Google Scholar 

  4. Cao X. (2008) Differential Harnack estimates for backward heat equations with potentials under the Ricci flow. J. Funct. Anal. 255(4): 1024–1038

    Article  MATH  MathSciNet  Google Scholar 

  5. Chow B. (1991) On Harnack’s inequality and entropy for the Gaussian curvature flow. Comm. Pure Appl. Math. 44(4): 469–483

    Article  MATH  MathSciNet  Google Scholar 

  6. Chow B. (1991) The Ricci flow on the 2-sphere. J. Differential Geom. 33(2): 325–334

    MATH  MathSciNet  Google Scholar 

  7. Chow B. (1992) The Yamabe flow on locally conformally flat manifolds with positive Ricci curvature. Comm. Pure Appl. Math. 45(8): 1003–1014

    Article  MATH  MathSciNet  Google Scholar 

  8. Chow B., Chu S.-C. (1995) A geometric interpretation of Hamilton’s Harnack inequality for the Ricci flow. Math. Res. Lett. 2(6): 701–718

    MATH  MathSciNet  Google Scholar 

  9. B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, L. Ni, The Ricci flow: techniques and applications. Part II, Mathematical Surveys and Monographs 144, American Mathematical Society, Providence, RI (2007).

  10. Chow B., Hamilton R.S. (1997) Constrained and linear Harnack inequalities for parabolic equations. Invent. Math. 129(2): 13–238

    Article  MathSciNet  Google Scholar 

  11. Guenther C.M. (2002) The fundamental solution on manifolds with time-dependent metrics. J. Geom. Anal. 12(3): 425–436

    MATH  MathSciNet  Google Scholar 

  12. Hamilton R.S. (1986) Four-manifolds with positive curvature operator. J. Differential Geom. 24(2): 153–179

    MATH  MathSciNet  Google Scholar 

  13. R.S. Hamilton, The Ricci flow on surfaces, in “Mathematics and General Relativity (Santa Cruz, CA, 1986)”, Amer. Math. Soc., Providence, RI (1988), 237–262.

  14. Hamilton R.S. (1993) The Harnack estimate for the Ricci flow. J. Differential Geom. 37(1): 225–243

    MATH  MathSciNet  Google Scholar 

  15. Hamilton R.S. (1993) A matrix Harnack estimate for the heat equation. Comm. Anal. Geom. 1(1): 113–126

    MATH  MathSciNet  Google Scholar 

  16. Hamilton R.S. (1995) Harnack estimate for the mean curvature flow. J. Differential Geom. 41(1): 215–226

    MATH  MathSciNet  Google Scholar 

  17. Kuang S., Zhang Q. (2008) A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow. J. Funct. Anal. 255(4): 1008–1023

    Article  MATH  MathSciNet  Google Scholar 

  18. Li P., Yau S.T. (1986) On the parabolic kernel of the Schrödinger operator. Acta Math. 156(3/4): 153–201

    Article  MathSciNet  Google Scholar 

  19. Ni L. (2006) A note on Perelman’s LYH-type inequality. Comm. Anal. Geom. 14(5): 883–905

    MATH  MathSciNet  Google Scholar 

  20. Ni L. (2007) A matrix Li–Yau–Hamilton estimate for Kähler–Ricci flow. J. Differential Geom. 75(2): 303–358

    MATH  MathSciNet  Google Scholar 

  21. G. Perelman, The entropy formula for the Ricci flow and its geometric applications, 2002.

  22. Sturm K.T. (1996) Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality. J. Math. Pures Appl. (9) 75(3): 273–297

    MATH  MathSciNet  Google Scholar 

  23. Q.S. Zhang, Some gradient estimates for the heat equation on domains and for an equation by Perelman, Int. Math. Res. Not. 39 (2006), Art. ID 92314,

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Cao.

Additional information

The research of the first author was partially supported by the Jeffrey Sean Lehman Fund at Cornell University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, X., Hamilton, R.S. Differential Harnack Estimates for Time-Dependent Heat Equations with Potentials. Geom. Funct. Anal. 19, 989–1000 (2009). https://doi.org/10.1007/s00039-009-0024-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-009-0024-4

Keywords and phrases

2000 Mathematics Subject Classification

Navigation