Skip to main content
Log in

A Universality Result for the Smallest Eigenvalues of Certain Sample Covariance Matrices

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

After proper rescaling and under some technical assumptions, the smallest eigenvalue of a sample covariance matrix with aspect ratio bounded away from 1 converges to the Tracy–Widom distribution. This complements the results on the largest eigenvalue, due to Soshnikov and Péché.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Aubrun, A sharp small deviation inequality for the largest eigenvalue of a random matrix, Séminaire de Probabilités XXXVIII, Springer Lecture Notes in Math. 1857 (2005), 320–337.

    MathSciNet  Google Scholar 

  2. Bai Z.D., Yin Y.Q.: Limit of the smallest eigenvalue of a large-dimensional sample covariance matrix. Ann. Probab. 21(3), 1275–1294 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Borodin A., Forrester P.J.: Increasing subsequences and the hard-to-soft edge transition in matrix ensembles. J. Phys. A 36(12), 2963–2981 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bronk B.V.: Accuracy of the semicircle approximation for the density of eigenvalues of random matrices. J. Math. Phys. 5, 215–220 (1964)

    Article  MathSciNet  Google Scholar 

  5. Bryc W., Pierce V.U.: Duality of real and quaternionic random matrices. Electron. J. Probab. 14(17), 452–476 (2009)

    MATH  MathSciNet  Google Scholar 

  6. P.J. Forrester, T. Nagao, G. Honner, Correlations for the orthogonal-unitary and symplectic-unitary transitions at the hard and soft edges, Nuclear Phys. B 553:3 (1999), 601–643.

    Article  MATH  MathSciNet  Google Scholar 

  7. Johansson K.: Shape fluctuations and random matrices. Comm. Math. Phys. 209(2), 437–476 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. I.M. Johnstone, On the distribution of the largest eigenvalue in principal components analysis, Ann. Statist. 29:2 (2001), 295–327.

    Article  MATH  MathSciNet  Google Scholar 

  9. O. Khorunzhiy, V. Vengerovsky, Even walks and estimates of high moments of large Wigner random matrices, preprint; arXiv:0806.0157

  10. M. Ledoux, A remark on hypercontractivity and tail inequalities for the largest eigenvalues of randommatrices, Séminaire de Probabilités XXXVII, Springer Lecture Notes in Math. 1832 (2003), 360–369.

    MathSciNet  Google Scholar 

  11. M. Ledoux, Deviation inequalities on largest eigenvalues, Geometric Aspects of Functional Analysis, Springer Lecture Notes in Math. 1910 (2007), 167–219.

    Article  MathSciNet  Google Scholar 

  12. M. Ledoux, A recursion formula for the moments of the Gaussian orthogonal ensemble, Annales IHP, to appear.

  13. Lenard A.: Correlation functions and the uniqueness of the state in classical statistical mechanics. Comm. Math. Phys. 30, 35–44 (1973)

    Article  MathSciNet  Google Scholar 

  14. B.M. Levitan, On a uniqueness theorem (Russian), Doklady Akad. Nauk SSSR (N.S.) 76 (1951), 485–488.

    MATH  MathSciNet  Google Scholar 

  15. M.L. Mehta, RandomMatrices, third edition, Pure and Applied Mathematics (Amsterdam) 142, Elsevier/Academic Press, Amsterdam, 2004.

    Google Scholar 

  16. S. Péché, Universality results for largest eigenvalues of some sample covariance matrix ensembles, Probab. Theory Related Fields 143:3 (2009), 481–516.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Rudelson, R. Vershynin, The smallest singular value of a random rectangular matrix, Comm. Pure Appl. Math., to appear.

  18. Ruzmaikina A.: Universality of the edge distribution of eigenvalues of Wigner random matrices with polynomially decaying distributions of entries. Comm. Math. Phys. 261(2), 277–296 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. M.A. Snyder, Chebyshev Methods in Numerical Approximation, Prentice-Hall, Inc., Englewood Cliffs, N.J. 1966.

  20. S. Sodin, Random matrices, nonbacktracking walks, and orthogonal polynomials, J. Math. Phys. 48:12 (2007)

    Article  MathSciNet  Google Scholar 

  21. A. Soshnikov, Universality at the edge of the spectrum inWigner random matrices, Comm. Math. Phys. 207:3 (1999), 697–733.

    Article  MATH  MathSciNet  Google Scholar 

  22. Soshnikov A.: A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices. J. Statist. Phys. 108(5-6), 1033–1056 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. T. Tao, V. Vu, Random matrices: The distribution of the smallest singular values, Geom. Funct. Anal. 20:1 (2010), doi:10.1007/s00039-010-0057-8.

    Article  Google Scholar 

  24. Tracy C., Widom H.: Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159, 151–174 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tracy C., Widom H.: On orthogonal and symplectic matrix ensembles. Comm. Math. Phys. 177(3), 727–754 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasha Sodin.

Additional information

The second author is supported in part by the Adams Fellowship Program of the Israel Academy of Sciences and Humanities and by the ISF.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldheim, O.N., Sodin, S. A Universality Result for the Smallest Eigenvalues of Certain Sample Covariance Matrices. Geom. Funct. Anal. 20, 88–123 (2010). https://doi.org/10.1007/s00039-010-0055-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-010-0055-x

Keywords and phrases

2010 Mathematics Subject Classification

Navigation