Skip to main content
Log in

Random Matrices: the Distribution of the Smallest Singular Values

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

Let ξ be a real-valued random variable of mean zero and variance 1. Let M n (ξ) denote the n × n random matrix whose entries are iid copies of ξ and σ n (M n (ξ)) denote the least singular value of M n (ξ). The quantity σ n (M n (ξ))2 is thus the least eigenvalue of the Wishart matrix \({M_nM_n^\ast}\).

We show that (under a finite moment assumption) the probability distribution n σ n (M n (ξ))2 is universal in the sense that it does not depend on the distribution of ξ. In particular, it converges to the same limiting distribution as in the special case when ξ is real gaussian. (The limiting distribution was computed explicitly in this case by Edelman.)

We also proved a similar result for complex-valued random variables of mean zero, with real and imaginary parts having variance 1/2 and covariance zero. Similar results are also obtained for the joint distribution of the bottom k singular values of M n (ξ) for any fixed k (or even for k growing as a small power of n) and for rectangular matrices.

Our approach is motivated by the general idea of “property testing” from combinatorics and theoretical computer science. This seems to be a new approach in the study of spectra of random matrices and combines tools from various areas of mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon N., Krivelevich M., Vu V.: Concentration of eigenvalues of random matrices. Israel Math. J. 131, 259–267 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bai Z.D.: Convergence rate of expected spectral distributions of large random matrices, Part II. Sample covariance matrices. Ann. Probab. 21, 625–648 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai Z.D., Miao B., Tsay J.: A note on the convergence rate of the spectral distributions of large random matrices. Statist. Probab. Lett. 34, 95–101 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai Z.D., Miao B., Yao J.-F.: Convergence rates of spectral distributions of large sample covariance matrices. SIAM J. Matrix Anal. Appl. 25, 105–127 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Z.D. Bai, J. Silverstein, Spectral Analysis of Large Dimensional Random Matrices, Science press, 2006.

  6. Bai Z.D., Yin Y.Q.: Necessary and sufficient conditions for almost sure convergence of the largest eigenvalue of a Wigner matrix. Ann. Probab. 16(4), 1729–1741 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ben Arous G., Péché S.: Universality of local eigenvalue statistics for some sample covariance matrices. Comm. Pure Appl. Math. 58, 1316–1357 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borodin A., Forrester P.: Increasing subsequences and the hard-to-soft edge transition in matrix ensembles. J. Phys. A 36(2), 2963–2981 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Bourgain, P. Wood, V. Vu, On the singularity probability of random discrete matrices, submitted.

  10. Drineas P., Kannan R., Mahoney M.: Fast Monte Carlo algorithms for matrices. I. Approximating matrix multiplication. SIAM J. Comput. 36(1), 132–157 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Edelman A.: Eigenvalues and condition numbers of random matrices. SIAM J. Matrix Anal. Appl. 9, 543–560 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Edelman A.: The distribution and moments of the smallest eigenvalue of a random matrix of Wishart type. Linear Algebra Appl. 159, 55–80 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. O.N. Feldheim, S. Sodin, A universality result for the smallest eigenvalues of certain sample covariance matrices, Geom. Funct. Anal. 20:1 (2010), DOI:10.1007/s00039-010-0055-x.

  14. Forrester P.J.: The spectrum edge of random matrix ensembles. Nuclear Phys. B 402, 709–728 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Forrester P.J.: Exact results and universal asymptotics in the Laguerre random matrix ensemble. J. Math. Phys. 35(5), 2539–2551 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Forrester P.J., Witte N.S.: The distribution of the first eigenvalue spacing at the hard edge of the Laguerre unitary ensemble. Kyushu J. Math. 61(2), 457–526 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Frieze A., Kannan R., Vempala S.: Fast Monte-Carlo algorithms for finding low-rank approximations. J. ACM 51(6), 1025–1041 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. F. Götze, A. Tikhomirov, The rate of convergence of spectra of sample covariance matrices, preprint.

  19. A. Guionnet, O. Zeitouni, Concentration of the spectral measure for large matrices, Electron. Comm. Probab. 5 (2000), 119–136 (electronic).

    Google Scholar 

  20. Johansson K.: Shape fluctuations and random matrices. Comm. Math. Phys. 209, 437–476 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Johansson K.: Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices. Comm. Math. Phys. 215(3), 683–705 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Johnstone I.: On the distribution of largest principal component. Ann. Statist. 29, 295–327 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kahn J., Komlós J., Szemerédi E.: On the probability that a random ±1 matrix is singular. J. Amer. Math. Soc. 8, 223–240 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Komlós J.: On the determinant of (0, 1) matrices. Studia Sci. Math. Hungar. 2, 7–22 (1967)

    MathSciNet  MATH  Google Scholar 

  25. Komlós J.: On the determinant of random matrices. Studia Sci. Math. Hungar. 3, 387–399 (1968)

    MathSciNet  MATH  Google Scholar 

  26. M. Ledoux, The Concentration of Measure Phenomenon, Mathematical Surveys and Monographs 98, AMS (2001).

  27. Lindeberg J.W.: Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung. Math. Z. 15, 211–225 (1922)

    Article  MathSciNet  Google Scholar 

  28. Litvak A., Pajor A., Rudelson M., Tomczak-Jaegermann N.: Smallest singular value of random matrices and geometry of random polytopes. Adv. Math. 195(2), 491–523 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Marchenko V.A., Pastur L.A.: The distribution of eigenvalues in certain sets of random matrices. Mat. Sb. 72, 507–536 (1967)

    MathSciNet  Google Scholar 

  30. Mehta M.L.: Random Matrices and the Statistical Theory of Energy Levels. Academic Press, New York, NY (1967)

    MATH  Google Scholar 

  31. V. Milman, G. Schechtman, Asymptotic Theory of Finite-Dimensional Normed Spaces (with an appendix by M. Gromov), Springer Lecture Notes in Mathematics, 1200 (1986).

  32. Nagao T., Slevin K.: Laguerre ensembles of random matrices: nonuniversal correlation functions. J. Math. Phys. 34(6), 2317–2330 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nagao T., Wadati M.: Correlation functions of random matrix ensembles related to classical orthogonal polynomials. J. Phys. Soc. Japan 60(10), 3298–3322 (1991)

    Article  MathSciNet  Google Scholar 

  34. von Neumann J., Goldstine H.: Numerical inverting matrices of high order. Bull. Amer. Math. Soc. 53, 1021–1099 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pastur L.A.: Spectra of random self-adjoint operators. Russian Math. Surveys 28, 1–67 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  36. V. Paulauskas, A. Rackauskas, Approximation Theory in the Central Limit Theorem, Kluwer Academic Publishers, 1989.

  37. B. Rider, J. Ramirez, Diffusion at the random matrix hard edge, Comm. Math. Phys., to appear.

  38. Rudelson M.: Lower estimates for the singular values of random matrices. Compt. Rendus Math. de L’Academie des Sciences 342(4), 247–252 (2006)

    MathSciNet  MATH  Google Scholar 

  39. Rudelson M.: Invertibility of random matrices: norm of the inverse. Ann. of Math. (2) 168(2), 575–600 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rudelson M., Vershynin R.: The least singular value of a random square matrix is O(n −1/2). C. R. Math. Acad. Sci. Paris 346(15-16), 893–896 (2008)

    MathSciNet  MATH  Google Scholar 

  41. Rudelson M., Vershynin R.: The Littlewood–Offord problem and invertibility of random matrices. Advances in Mathematics 218, 600–633 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rudelson M., Vershynin R.: The least singular value of a random rectangular matrix. C. R. Acad. Sci. Paris 346, 893–896 (2008)

    MathSciNet  MATH  Google Scholar 

  43. Smale S.: On the efficiency of algorithms of analysis. Bull. Amer. Math. Soc. 13, 87–121 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  44. Soshnikov A.: A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices. J. Statist. Phys. 108(5-6), 1033–1056 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. D. Spielman, S.-H. Teng, Smoothed analysis of algorithms, Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), Higher Ed. Press, Beijing (2002), 597–606.

  46. Stroock D.: Probability Theory. An Analytic View. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  47. Talagrand M.: A new look at independence. Ann. Prob. 24(1), 1–34 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tao T., Vu V.: On random ±1 matrices: Singularity and Determinant. Random Structures and Algorithms 28, 1–23 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tao T., Vu V.: Inverse Littlewood–Offord theorems and the condition number of random discrete matrices. Annals of Mathematics 169, 595–632 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. T. Tao, V. Vu, The condition number of a randomly perturbed matrix, STOC’07—Proceedings of the 39th Annual ACM Symposium on Theory of Computing, ACM, New York (2007), 248–255.

  51. Tao T., Vu V.: On the singularity probability of random Bernoulli matrices. Journal of the AMS 20(3), 603–628 (2007)

    MathSciNet  MATH  Google Scholar 

  52. Tao T., Vu V.: Random matrices: The circular law. Commun. Contemp. Math. 10(2), 261–307 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  53. T. Tao, V. Vu, Random matrices: A general approach for the least singular value problem, submitted.

  54. T. Tao, V. Vu, Random matrices: Universality of ESDs and the circular law, submitted.

  55. T. Tao, V. Vu, From the Littlewood–Offord problem to the circular law: universality of the spectral distribution of random matrices, Bulletin of AMS, to appear.

  56. Yin Y.Q.: Limiting spectral distribution for a class of random matrices. J. Multivariate Anal. 20, 50–68 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Vu.

Additional information

T.T. is supported by a grant from the MacArthur Foundation, and by NSF grant DMS-0649473. VV is supported by grants DMS-0901216 and AFPRS-FA-9550-09-1-0167.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, T., Vu, V. Random Matrices: the Distribution of the Smallest Singular Values. Geom. Funct. Anal. 20, 260–297 (2010). https://doi.org/10.1007/s00039-010-0057-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-010-0057-8

Keywords and phrases

2010 Mathematics Subject Classification

Navigation