Skip to main content
Log in

A Probabilistic Technique for Finding Almost-Periods of Convolutions

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We introduce a new probabilistic technique for finding ‘almost-periods’ of convolutions of subsets of groups. This gives results similar to the Bogolyubovtype estimates established by Fourier analysis on abelian groups but without the need for a nice Fourier transform to exist. We also present applications, some of which are new even in the abelian setting. These include a probabilistic proof of Roth’s theorem on three-term arithmetic progressions and a proof of a variant of the Bourgain–Green theorem on the existence of long arithmetic progressions in sumsets A+B that works with sparser subsets of {1, . . . , N} than previously possible. In the non-abelian setting we exhibit analogues of the Bogolyubov–Freiman–Halberstam–Ruzsa-type results of additive combinatorics, showing that product sets A 1 · A 2 · A 3 and A 2 · A −2 are rather structured, in the sense that they contain very large iterated product sets. This is particularly so when the sets in question satisfy small-doubling conditions or high multiplicative energy conditions. We also present results on structures in A · B.

Our results are ‘local’ in nature, meaning that it is not necessary for the sets under consideration to be dense in the ambient group. In particular, our results apply to finite subsets of infinite groups provided they ‘interact nicely’ with some other set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Alon, J.H. Spencer, The Probabilistic Method, 3rd ed. John Wiley & Sons, 2008.

  2. Bogolioùboff N. (1939) Sur quelques propriétés arithmétiques des presque-périodes. Ann. Chaire Phys. Math. Kiev 4: 185–205

    MathSciNet  Google Scholar 

  3. B. Bollobás, Random Graphs, 2nd ed., CUP, 2001.

  4. J. Bourgain, On arithmetic progressions in sums of sets of integers, A tribute to Paul Erdős, CUP (1990), 105–109.

  5. Bourgain J. (2008) Roth’s theorem on progressions revisited. J. Anal. Math. 104: 155–192

    Article  MATH  MathSciNet  Google Scholar 

  6. E. Breuillard, B. Green, Approximate groups, I: the torsion-free nilpotent case, Journal of the Inst. of Math. Jussieu, available on CJO 02 Jun 2010, doi:10.1017/S1474748010000150

  7. Breuillard E., Green B. (2010) Approximate groups, II: the solvable linear case. Quart. J. Math. 00: 1–9

    Google Scholar 

  8. E. Breuillard, B. Green, T. Tao, Linear approximate groups, preprint (2010); arXiv:1001.4570

  9. Bukh B. (2008) Sums of dilates. Combin. Probab. Comput. 17(5): 627–639

    Article  MATH  MathSciNet  Google Scholar 

  10. Chang M.-C. (2002) A polynomial bound in Freiman’s theorem. Duke Math. J. 113(3): 399–419

    Article  MATH  MathSciNet  Google Scholar 

  11. Chvátal V. (1979) The tail of the hypergeometric distribution. Discrete Math. 25(3): 285–287

    Article  MATH  MathSciNet  Google Scholar 

  12. E. Croot, I.Z. Ruzsa, T. Schoen, Arithmetic progressions in sparse sumsets, Combinatorial Number Theory, de Gruyter, Berlin (2007), 157–164.

  13. Croot E., Sisask O. (2009) A new proof of Roth’s theorem on arithmetic progressions. Proc. Amer. Math. Soc. 137(3): 805–809

    Article  MATH  MathSciNet  Google Scholar 

  14. E. Croot, O. Sisask, A note on proving Roth’s theorem using Bogolyubov’s method, note available at http://people.math.gatech.edu/~ecroot/expository.html

  15. D. Fisher, N.H. Katz, I. Peng, On Freiman’s theorem in nilpotent groups, preprint (2009); arXiv:0901.1409

  16. G.A. Freiman, Foundations of a Structural Theory of Set Addition, Translations of Mathematical Monographs 37, AMS (1973).

  17. Freiman G.A., Halberstam H., Ruzsa I.Z. (1992) Integer sum sets containing long arithmetic progressions. J. London Math. Soc. (2) 46(2): 193–201

    Article  MATH  MathSciNet  Google Scholar 

  18. Green B. (2002) Arithmetic progressions in sumsets. Geom. Funct. Anal. 12(3): 584–597

    Article  MATH  MathSciNet  Google Scholar 

  19. B. Green, Review MR2429639 (2009k:11023) of [ŁuS], Mathematical Reviews, available at http://www.ams.org/mathscinet-getitem?mr=2429639

  20. Green B., Ruzsa I.Z. (2007) Freiman’s theorem in an arbitrary abelian group. J. Lond. Math. Soc. (2) 75(1): 163–175

    Article  MATH  MathSciNet  Google Scholar 

  21. Green B., Ruzsa I.Z. (2006) Sets with small sumset and rectification. Bull. London Math. Soc. 38(1): 43–52

    Article  MATH  MathSciNet  Google Scholar 

  22. B. Green, T. Sanders, T. Tao, Personal communication.

  23. Hoeffding W. (1963) Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58: 13–30

    Article  MATH  MathSciNet  Google Scholar 

  24. E. Hrushovski, Stable group theory and approximate subgroups, preprint (2009); arXiv:0909.2190

  25. S. Janson, Large deviation inequalities for sums of indicator variables, Tech. Report 1994:34, Uppsala; available at http://www.math.uu.se/~svante/papers/index.html

  26. V.F. Lev, Character-free approach to progression-free sets, preprint (2009); arXiv:0911.0513

  27. V.F. Lev, Reconstructing integer sets from their representation functions, Electron. J. Combin. 11:1 (2004), Research Paper 78, 6 pp. (electronic).

    Google Scholar 

  28. Łuczak T., Schoen T. (2008) On a problem of Konyagin. Acta Arith. 134(2): 101–109

    Article  MATH  MathSciNet  Google Scholar 

  29. Meshulam R. (1995) On subsets of finite abelian groups with no 3-term arithmetic progressions. J. Combin. Theory Ser. A 71(1): 168–172

    Article  MATH  MathSciNet  Google Scholar 

  30. D.H.J. Polymath, A new proof of the density Hales–Jewett theorem, preprint (2009); arXiv:0910.3926

  31. L. Pyber, E. Szabó, Growth in finite simple groups of Lie type, preprint (2010); arXiv:1001.4556

  32. Roth K.F. (1953) On certain sets of integers. J. London Math. Soc. 28: 104–109

    Article  MATH  MathSciNet  Google Scholar 

  33. Ruzsa I.Z. (1991) Arithmetic progressions in sumsets. Acta Arith. 60(2): 191–202

    MATH  MathSciNet  Google Scholar 

  34. Ruzsa I.Z. (1994) Generalized arithmetical progressions and sumsets. Acta Math. Hungar. 65(4): 379–388

    Article  MATH  MathSciNet  Google Scholar 

  35. I.Z. Ruzsa, E. Szemerédi, Triple systems with no six points carrying three triangles, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, Colloq. Math. Soc. János Bolyai 18, North-Holland, Amsterdam-New York (1978). 939–945,

  36. Sanders T. (2008) Additive structures in sumsets. Math. Proc. Cambridge Philos. Soc. 144(2): 289–316

    Article  MATH  MathSciNet  Google Scholar 

  37. Sanders T. (2010) On a non-abelian Balog–Szemerédi-type lemma. J. Aust. Math. Soc. 89: 127–132

    Article  MATH  Google Scholar 

  38. Sanders T. (2009) Three-term arithmetic progressions and sumsets. Proc. Edinb. Math. Soc. (2) 52(1): 211–233

    Article  MATH  MathSciNet  Google Scholar 

  39. O. Sisask, Bourgain’s proof of the existence of long arithmetic progressions in A + B, note (2009); available at http://www.maths.qmul.ac.uk/~olof/

  40. E. Szemerédi, An old new proof of Roth’s theorem, Additive combinatorics, CRM Proc. Lecture Notes 43, Amer. Math. Soc., Providence, RI (2007), 51–54.

  41. T. Tao, Finite subsets of groups with no finite models, blog post available at http://terrytao.wordpress.com/2008/10/06/finite-subsets-of-groupswith-no-finite-models/+ (2008).

  42. Tao T. (2010) Freiman’s theorem for solvable groups. Contrib.. Discrete Math. 5(2): 137–184

    Google Scholar 

  43. Tao T. (2008) Product set estimates for non-commutative groups. Combinatorica 28(5): 547–594

    Article  MATH  MathSciNet  Google Scholar 

  44. T. Tao, V.H. Vu, Additive combinatorics, CUP (2006).

  45. Varnavides P. (1959) On certain sets of positive density. J. London Math. Soc. 34: 358–360

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olof Sisask.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croot, E., Sisask, O. A Probabilistic Technique for Finding Almost-Periods of Convolutions. Geom. Funct. Anal. 20, 1367–1396 (2010). https://doi.org/10.1007/s00039-010-0101-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-010-0101-8

Keywords and phrases

2010 Mathematics Subject Classification

Navigation