Skip to main content
Log in

Metric Flips with Calabi Ansatz

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We study the limiting behavior of the Kähler–Ricci flow on \({{\mathbb{P}(\mathcal{O}_{\mathbb{P}^n} \oplus \mathcal{O}_{\mathbb{P}^n}(-1)^{\oplus(m+1)})}}\) for m, n ≥ 1, assuming the initial metric satisfies the Calabi symmetry. We show that the flow either shrinks to a point, collapses to \({{\mathbb{P}^n}}\) or contracts a subvariety of codimension m + 1 in the Gromov–Hausdorff sense. We also show that the Kähler–Ricci flow resolves a certain type of cone singularities in the Gromov–Hausdorff sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin T.: Équations du type Monge–Ampère sur les variétés kählériennes compactes. Bull. Sci. Math. (2) 102(1), 63–95 (1978)

    MathSciNet  MATH  Google Scholar 

  2. W.P. Barth, K. Hulek, C.A.M. Peters, A. Van de Ven, Compact Complex Surfaces. Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, Berlin

  3. E. Calabi, Métriques Kählériennes et fibrés holomorphes, Annales scientifiques de l’fÉ.N.S. 4e série, 12:2 (1979), 269–294.

  4. E. Calabi, Extremal Kähler metrics, Seminar on Differential Geometry, Ann. of Math. Stud. 102, Princeton Univ. Press, Princeton, NJ (1982), 259–290.

  5. Cao H.D.: Deformation of Kähler metrics to Kähler–Einstein metrics on compact Kähler manifolds. Invent. Math 81(2), 359–372 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. H.D. Cao, Existence of gradient Kähler–Ricci solitons, Elliptic and Parabolic Methods in Geometry (Minneapolis, MN, 1994), A.K. Peters, Wellesley, MA, (1996), 1–16.

  7. Cao H.D., Zhu X.-P.: A Complete Proof of the Poincaré and Geometrization Conjectures - Application of the Hamilton-Perelman Theory of the Ricci Flow. Asian J. Math 10(2), 165–492 (2006)

    MathSciNet  MATH  Google Scholar 

  8. X.-X. Chen, B. Wang, Kähler–Ricci flow on Fano manifolds (I), preprint; arXiv:0909.2391

  9. Debarre O.: Higher-Dimensional Algebraic Geometry. Universitext. Springer-Verlag, New York (2001)

    MATH  Google Scholar 

  10. J.P. Demailly, Applications of the theory of L 2 estimates and positive currents in algebraic geometry, Lecture Notes, École d’été de Mathématiques de Grenoble ‘Géométrie des variétés projectives complexes : programme du modèle minimal’ (June-July 2007), arXiv: 9410022

  11. Donaldson S.K.: Scalar curvature and stability of toric varieties. J. Differential Geom 62, 289–349 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Feldman M., Ilmanen T., Knopf D.: Rotationally symmetric shrinking and expanding gradient Kähler–Ricci solitons. J. Differential Geometry 65(2), 169–209 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Griffiths P., Harris J.: Principles of Algebraic Geometry, Pure and Applied Mathematics. Wiley-Interscience, New York (1978)

    Google Scholar 

  14. Hamilton R.S.: Three-manifolds with positive Ricci curvature. J. Differential Geom 17(2), 255–306 (1982)

    MathSciNet  MATH  Google Scholar 

  15. Hamilton R.S.: Four-manifolds with positive isotropic curvature. Comm. Anal. Geom 5(1), 1–92 (1997)

    MathSciNet  MATH  Google Scholar 

  16. Kawamata Y.: Pluricanonical systems on minimal algebraic varieties. Invent. Math 79, 567–588 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. Kawamata, K. Matsuda, K. Matsuki, Introduction to the minimal model problem, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math. 10, North-Holland, Amsterdam (1987), 283–360.

  18. Kleiner B., Lott J.: Notes on Perelman’s papers, Geom. Topol 12(5), 2587–2855 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. N. Koiso, On rotationally symmetric Hamilton’s equation for Kähler–Einstein metrics, Recent Topics in Differential and Analytic Geometry, Adv. Stud. Pure Math. 18-I, Academic Press, Boston, MA (1990), 327–337.

  20. Kollár S., Mori S.: Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics 134. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  21. Kolodziej S.: The complex Monge–Ampère equation. Acta Math 180(1), 69–117 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kolodziej S.: The Complex Monge–Ampère Equation and Pluripotential Theory. Mem. Amer. Math. Soc 178, 840 (2005)

    MathSciNet  Google Scholar 

  23. G. La Nave, G. Tian, Soliton-type metrics and Kähler–Ricci flow on symplectic quotients, preprint; arXiv: 0903.2413

  24. C. Li, On rotationally symmetric Kähler–Ricci solitons, preprint; arXiv:1004.4049

  25. J. Morgan, G. Tian, Completion of the Proof of the Geometrization Conjecture, preprint; arXiv: 0809.4040

  26. O. Munteanu, G. Székelyhidi, On convergence of the Kähler–Ricci flow, preprint; arXiv: 0904.3505

  27. G. Perelman, The entropy formula for the Ricci flow and its geometric applications, preprint; arXiv:math.DG/0211159

  28. G. Perelman, unpublished work on the Kähler–Ricci flow

  29. Phong D.H., Sesum N., Sturm J.: Multiplier ideal sheaves and the Kähler–Ricci flow Comm. Anal. Geom 15(3), 613–632 (2007)

    MathSciNet  MATH  Google Scholar 

  30. Phong D.H., Song J., Sturm J., Weinkove B.: The Kähler–Ricci flow and the \({{\bar{\partial}}}\) operator on vector fields. J. Differential Geometry 81(3), 631–647 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Phong D.H., Song J., Sturm J., Weinkove B.: The Kähler–Ricci flow with positive bisectional curvature. Invent. Math. 173(3), 651–665 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Phong D.H., Song J., Sturm J., Weinkove B.: On the convergence of the modified Kähler–Ricci flow and solitons. Comment. Math. Helv 86(1), 91–112 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Phong D.H., Sturm J.: On stability and the convergence of the Kähler–Ricci flow. J. Differential Geometry 72(1), 149–168 (2006)

    MathSciNet  MATH  Google Scholar 

  34. Rubinstein Y.: On the construction of Nadel multiplier ideal sheaves and the limiting behavior of the Ricci flow, Trans. Amer. Math. Soc. 361:11 (2009), 5839–5850.

    Google Scholar 

  35. Sesum N., Tian G.: Bounding scalar curvature and diameter along the Kähler Ricci flow (after Perelman). J. Inst. Math. Jussieu 7(3), 575–587 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Song, Finite time extinction of the Kähler–Ricci flow, preprint; arXiv: 0905.0939

  37. Song J., Tian G.: The Kähler–Ricci flow on surfaces of positive Kodaira dimension. Invent. Math. 170(3), 609–653 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Song, G. Tian, Canonical measures and Kähler–Ricci flow, preprint; arXiv: 0802.2570

  39. J. Song, G. Tian, The Kähler–Ricciflow through singularities, preprint; arXiv: 0909.4898

  40. J. Song, B. Weinkove, The Kähler–Ricci flow on Hirzebruch surfaces, preprint; arXiv: 0903.1900

  41. J. Song, B. Weinkove, Contracting exceptional divisors by the Kähler–Ricci flow, preprint; arXiv:0909.4898

  42. J. Song, B. Weinkove, Contracting divisors by the Kähler–Ricci flow on \({\mathbb {P}^1}\) -bundles and minimal surfaces of general type, preprint.

  43. Székelyhidi G.: The Kähler–Ricci flow and K-polystability. Amer. J. Math. 132, 1077–1090 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. G. Székelyhidi, V. Tosatti, Regularity of weak solutions of a complex Monge–Ampère equation, Anal. PDE (2010), to appear.

  45. Tian G.: Kähler–Einstein metrics with positive scalar curvature. Invent. Math 130(1), 1–37 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tian G.: New results and problems on Kähler–Ricci flow, Géométrie différentielle, physique mathématique. mathématiques et société. II. Astérisque 322, 71–92 (2008)

    Google Scholar 

  47. Tian G., Zhang Z.: On the Kähler–Ricci flow on projective manifolds of general type. Chinese Ann. Math. Ser. B 27(2), 179–192 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tian G., Zhu X.: Convergence of Kähler–Ricci flow. J. Amer. Math. Soc 20(3), 675–699 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tosatti V.: Kähler–Ricci flow on stable Fano manifolds. J. Reine Angew. Math 640, 67–84 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Tsuji H.: Existence and degeneration of Kähler–Einstein metrics on minimal algebraic varieties of general type. Math. Ann 281, 123–133 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang X.J., Zhu X.: Kähler–Ricci solitons on toric manifolds with positive first Chern class. Advances Math 188, 87–103 (2004)

    Article  MATH  Google Scholar 

  52. Yau S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I. Comm. Pure Appl. Math 31, 339–411 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  53. Yau S.T.: Open problems in geometry. Proc. Symposia Pure Math. 54, 1–28 (1993)

    Google Scholar 

  54. Y. Yuan, On the convergence of a modified Kähler–Ricci flow, Math. Z., to appear.

  55. Z. Zhang, On degenerate Monge–Ampère equations over closed Kähler manifolds, Int. Math. Res. Not. 2006, Art. ID 63640, 18 pp.

  56. X. Zhu, Kähler–Ricci flow on a toric manifold with positive first Chern class, preprint, arXiv: math.DG/0703486

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Yuan.

Additional information

The first named author is supported in part by National Science Foundation grant DMS-0847524 and a Sloan Foundation Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, J., Yuan, Y. Metric Flips with Calabi Ansatz. Geom. Funct. Anal. 22, 240–265 (2012). https://doi.org/10.1007/s00039-012-0151-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-012-0151-1

Keywords and phrases

2010 Mathematics Subject Classification

Navigation