Skip to main content
Log in

Simple random walk on the uniform infinite planar quadrangulation: subdiffusivity via pioneer points

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We study the pioneer points of the simple random walk on the uniform infinite planar quadrangulation (UIPQ) using an adaptation of the peeling procedure of Angel (Geom Funct Anal 13:935–974, 2003) to the quadrangulation case. Our main result is that, up to polylogarithmic factors, n 3 pioneer points have been discovered before the walk exits the ball of radius n in the UIPQ. As a result we verify the KPZ relation Knizhnik et al. (Modern Phys Lett A 3:819–826, 1988) in the particular case of the pioneer exponent and prove that the walk is subdiffusive with exponent less than 1/3. Along the way, new geometric controls on the UIPQ are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ambjørn, B. Durhuus, and T. Jonsson. A statistical field theory approach. Quantum geometry. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1997).

  2. O. Angel. Scaling of percolation on infinite planar maps, i. arXiv:0501006.

  3. Angel O (2003) Growth and percolation on the uniform infinite planar triangulation. Geom. Funct. Anal., 13: 935–974

    Article  MathSciNet  MATH  Google Scholar 

  4. O. Angel and N. Curien. Percolations on infinite random maps (2013, In preparation).

  5. Angel O., Schramm O (2003) Uniform infinite planar triangulation. Comm. Math. Phys. 241: 191–213

    MathSciNet  MATH  Google Scholar 

  6. M. T. Barlow. Which values of the volume growth and escape time exponent are possible for a graph? Rev. Mat. Iberoamericana, 20 (2004), 1–31.

    Google Scholar 

  7. M. T. Barlow and T. Kumagai. Random walk on the incipient infinite cluster on trees. Illinois J. Math., 50 (2006), 33–65 (electronic).

    Google Scholar 

  8. I. Benjamini. Random planar metrics. Proceedings of the ICM (2010).

  9. I. Benjamini and N. Curien. Ergodic theory on stationary random graphs, arXiv:1011.2526.

  10. I. Benjamini and P. Papasoglu. Growth and isoperimetric profile of planar graphs. Proc. Amer. Math. Soc., 139 (2011), 4105–4111.

    Google Scholar 

  11. I. Benjamini and O. Schramm. Recurrence of distributional limits of finite planar graphs. Electron. J. Probab., 6 (2001), 23, (13, pp. electronic).

  12. J. Bertoin. Random Fragmentations and Coagulation Processes. Cambridge Studies in Advanced Mathematics, Vol. vol. 102. Cambridge University Press, Cambridge (2006).

  13. A. A. Borovkov and K. A. Borovkov. Asymptotic analysis of random walks. Encyclopedia of Mathematics and its Applications, Vol. 118. Cambridge University Press, Cambridge (2008). (Heavy-tailed distributions, Translated from the Russian by O. B. Borovkova).

  14. J. Bouttier and E. Guitter. Distance statistics in quadrangulations with a boundary, or with a self-avoiding loop. J. Phys. A, 42 (2009), 465208.

    Google Scholar 

  15. A. K. Chandra, P. Raghavan, W. L. Ruzzo, R. Smolensky and P. Tiwari. The electrical resistance of a graph captures its commute and cover times. Comput. Complexity, 6 (1996/1997), 312–340.

    Google Scholar 

  16. P. Chassaing and B. Durhuus. Local limit of labeled trees and expected volume growth in a random quadrangulation. Ann. Probab., 34 (2006), 879–917.

    Google Scholar 

  17. D. Croydon and T. Kumagai. Random walks on Galton–Watson trees with infinite variance offspring distribution conditioned to survive. Electron. J. Probab., (51)13 (2008), 1419–1441.

    Google Scholar 

  18. N. Curien, L. Ménard, and G. Miermont. A view from infinity of the uniform infinite planar quadrangulation. arXiv:1201.1052.

  19. N. Curien and G. Miermont. Uniform infinite planar quadrangulations with a boundary. arXiv:1202.5452.

  20. P. G. De Gennes. La percolation : un concept unificateur. La Recherche, 7 (1976), 919–927.

    Google Scholar 

  21. B. Duplantier. Conformal random geometry. In: Mathematical statistical physics. Elsevier B. V., Amsterdam, pp. 101–217 (2006).

  22. B. Duplantier and K.-H. Kwon. Conformal invariance and intersections of random walks. Phys. Rev. Lett., 61 (1988).

  23. B. Duplantier and S. Sheffield. Duality and the Knizhnik-Polyakov-Zamolodchikov relation in Liouville quantum gravity. Phys. Rev. Lett., 102 (2009), 150603, 4.

    Google Scholar 

  24. Z. Gao and L. B. Richmond. Root vertex valency distributions of rooted maps and rooted triangulations. European J. Combin., 15 (1994), 483–490.

    Google Scholar 

  25. J. T. Gill and S. Rohde. On the Riemann surface type of random planar maps, arXiv:1101.1320.

  26. O. Gurel-Gurevich and A. Nachmias. Recurrence of planar graph limits (2012).

  27. H. Kesten. Subdiffusive behavior of random walk on a random cluster. Ann. Inst. H. Poincaré Probab. Statist., 22 (1986), 425–487.

    Google Scholar 

  28. V. G. Knizhnik, A. M. Polyakov, and A. B. Zamolodchikov. Fractal structure of 2D-quantum gravity. Modern Phys. Lett. A, 3 (1988), 819–826.

    Google Scholar 

  29. A. N. Kolmogorov. Zur lösung einer biologischen aufgabe [german: On the solution of a problem in biology]. Izv. NII Matem. Mekh. Tomskogo Univ., 2 (1938), 7–12.

  30. M. Krikun. Local structure of random quadrangulations. arXiv:0512304.

  31. T. Kumagai. Random walks on disordered media and their scaling limits. 40th Probability Summer School, St. Flour, July 4–17 (2010).

  32. Lawler G.F., Schramm O., Werner W (2001) The dimension of the planar Brownian frontier is 4/3. Math. Res. Lett., 8: 401–411

    MathSciNet  MATH  Google Scholar 

  33. J.-F. Le Gall. Uniqueness and universality of the Brownian map. arXiv:1105.4842.

  34. J.-F. Le Gall. Une approche élémentaire des théorèmes de décomposition de Williams. In: Séminaire de Probabilités, XX, 1984/85. Lecture Notes in Math., Vol. 1204, pp. 447–464. Springer, Berlin (1986).

  35. J.-F. Le Gall and L. Ménard. Scaling limits for the uniform infinite planar quadrangulation, arXiv:1005.1738.

  36. R. Lyons, R. Pemantle, and Y. Peres. Conceptual proofs of \({l\, {\rm log}\, l}\) criteria for mean behavior of branching processes. Ann. Probab., 23 (1995), 1125–1138.

    Google Scholar 

  37. L. Ménard. The two uniform infinite quadrangulations of the plane have the same law. Ann. Inst. H. Poincaré Probab. Statist., 46 (2010), 190–208.

    Google Scholar 

  38. G. Miermont. The Brownian map is the scaling limit of uniform random plane quadrangulations, arXiv:1104.1606.

  39. J. Neveu. Arbres et processus de Galton–Watson. Ann. Inst. H. Poincaré Probab. Statist., 22 (1986), 199–207.

    Google Scholar 

  40. G. Schaeffer. Conjugaison d’arbres et cartes combinatoires aléatoires. Ph.d thesis (1998).

  41. S. Sheffield. Conformal weldings of random surfaces: SLE and the quantum gravity zipper, arXiv:1012.4797.

  42. Y. Watabiki. Construction of non-critical string field theory by transfer matrix formalism in dynamical triangulation. Nuclear Phys. B, 441 (1995), 119–163.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itai Benjamini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benjamini, I., Curien, N. Simple random walk on the uniform infinite planar quadrangulation: subdiffusivity via pioneer points. Geom. Funct. Anal. 23, 501–531 (2013). https://doi.org/10.1007/s00039-013-0212-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-013-0212-0

Keywords

Navigation