Skip to main content
Log in

Beurling Dimension of Gabor Pseudoframes for Affine Subspaces

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Pseudoframes for subspaces have been recently introduced by Li and Ogawa as a tool to analyze lower dimensional data with arbitrary flexibility of both the analyzing and the dual sequence.

In this paper we study Gabor pseudoframes for affine subspaces by focusing on geometrical properties of their associated sets of parameters. We first introduce a new notion of Beurling dimension for discrete subsets of ℝd by employing a certain generalized Beurling density. We present several properties of Beurling dimension including a comparison with other notions of dimension showing, for instance, that our notion includes the mass dimension as a special case. Then we prove that Gabor pseudoframes for affine subspaces satisfy a certain Homogeneous Approximation Property, which implies invariance under time–frequency shifts of an approximation by elements from the pseudoframe.

The main result of this paper is a classification of Gabor pseudoframes for affine subspaces by means of the Beurling dimension of their sets of parameters. This provides us, in particular, with a Nyquist dimension which separates sets of parameters of pseudoframes from those of non-pseudoframes and which links a fixed value to sets of parameters of pseudo-Riesz sequences. These results are even new for the special case of Gabor frames for an affine subspace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barlow, M.T., Taylor, S.J.: Fractional dimension of sets in discrete spaces. J. Phys. A: Math. Gen. 22, 2621–2626 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benyamini, Y.: The uniform classification of Banach spaces. Longhorn Notes. University of Texas Austin, pp. 15–38 (1984–5).

  3. Candès, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities. Comm. Pure Appl. Math. 57, 219–266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Casazza, P.G., Kutyniok, G., Li, S.: Fusion frames and distributed processing. Appl. Comput. Harmon. Anal. (to appear)

  5. Casazza, P.G., Tremain, J.C.: The Kadison–Singer problem in mathematics and engineering. Proc. Natl. Acad. Sci. USA 103, 2032–2039 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Christensen, O., Deng, B., Heil, C.: Density of Gabor frames. Appl. Comput. Harmon. Anal. 7, 292–304 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Christensen, O., Eldar, Y.C.: Oblique dual frames and shift-invariant spaces. Appl. Comput. Harmon. Anal. 17(1), 48–68 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Czaja, W., Kutyniok, G., Speegle, D.: Geometry of sets of parameters of wave packets. Appl. Comput. Harmon. Anal. 20, 108–125 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dörfler, M.: Time-frequency analysis for music signals: A mathematical approach. J. New Music Res. 30, 3–12 (2001)

    Article  Google Scholar 

  10. Heil, C.: History and evolution of the Density Theorem for Gabor frames. J. Fourier Anal. Appl. 13, 113–166 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Heil, C.: The Density Theorem and the Homogeneous Approximation Property for Gabor frames. In: Jorgensen, P.E.T., Merrill, K.D., Packer, J.A. (eds.) Representations, Wavelets, and Frames. A Celebration of the Mathematical Work of Lawrence Baggett. Birkhäuser (2008, to appear)

  12. Heil, C., Kutyniok, G.: Density of weighted wavelet frames. J. Geom. Anal. 13, 479–493 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Heil, C., Kutyniok, G.: The homogeneous approximation property for wavelet frames. J. Approx. Theory, 147, 28–46 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kutyniok, G.: Affine density, frame bounds, and the admissibility condition for wavelet frames. Constr. Approx. 25, 239–253 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Landau, H.: Necessary density conditions for sampling and interpolation of certain entire functions. Acta Math. 117, 37–52 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, S., Ogawa, H.: Pseudo-duals of frames with applications. Appl. Comput. Harmon. Anal. 11, 289–304 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, S., Ogawa, H.: Pseudoframes for subspaces with applications. J. Fourier Anal. Appl. 10, 409–431 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, S., Ogawa, H.: Optimal noise suppression: A geometric nature of pseudoframes for subspaces. Adv. Comput. Math. 28, 141–155 (2008)

    Article  MathSciNet  Google Scholar 

  19. Naudts, J.: Dimension of discrete fractal sets. J. Phys. A: Math. Gen. 21, 447–452 (1988)

    Article  MathSciNet  Google Scholar 

  20. Naudts, J.: Reply to a paper by M.T. Barlow and S.J. Taylor. J. Phys. A: Math. Gen. 22, 2627–2628 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ramanathan, J., Steger, T.: Incompleteness of sparse coherent states. Appl. Comput. Harmon. Anal. 2, 148–153 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Strohmer, T., Heath, R.W., Jr.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14, 257–275 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sun, W.: G-frames and g-Riesz bases. J. Math. Anal. Appl. 322(1), 437–452 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Czaja.

Additional information

Communicated by Karlheinz Gröchenig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czaja, W., Kutyniok, G. & Speegle, D. Beurling Dimension of Gabor Pseudoframes for Affine Subspaces. J Fourier Anal Appl 14, 514–537 (2008). https://doi.org/10.1007/s00041-008-9026-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-008-9026-0

Keywords

Mathematics Subject Classification (2000)

Navigation