Skip to main content
Log in

A Quadrature Formula for Diffusion Polynomials Corresponding to a Generalized Heat Kernel

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Let {φ k } be an orthonormal system on a quasi-metric measure space \({\mathbb{X}}\), { k } be a nondecreasing sequence of numbers with lim k→∞ k =∞. A diffusion polynomial of degree L is an element of the span of {φ k : k L}. The heat kernel is defined formally by \(K_{t}(x,y)=\sum_{k=0}^{\infty}\exp(-\ell _{k}^{2}t)\phi_{k}(x)\overline{\phi_{k}(y)}\). If T is a (differential) operator, and both K t and T y K t have Gaussian upper bounds, we prove the Bernstein inequality: for every p, 1≤p≤∞ and diffusion polynomial P of degree L, ‖TP p c 1 L cP p . In particular, we are interested in the case when \({\mathbb{X}}\) is a Riemannian manifold, T is a derivative operator, and \(p\not=2\). In the case when \({\mathbb{X}}\) is a compact Riemannian manifold without boundary and the measure is finite, we use the Bernstein inequality to prove the existence of quadrature formulas exact for integrating diffusion polynomials, based on an arbitrary data. The degree of the diffusion polynomials for which this formula is exact depends upon the mesh norm of the data. The results are stated in greater generality. In particular, when T is the identity operator, we recover the earlier results of Maggioni and Mhaskar on the summability of certain diffusion polynomial valued operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belkin, M., Niyogi, P.: Semi-supervised learning on Riemannian manifolds. Mach. Learn. 56, 209–239 (2004)

    Article  MATH  Google Scholar 

  2. Belkin, M., Matveeva, I., Niyogi, P.: Regularization and regression on large graphs. In: Proc. of Computational Learning Theory, Banff, Canada (2004)

  3. Boothby, W.M.: An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press, San Diego (2003)

    Google Scholar 

  4. Cheng, S.Y., Li, P., Yau, S.-T.: On the upper estimate of the heat kernel of a complete Riemannian manifold. Am. J. Math. 103(5), 1021–1063 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chui, C.K., Donoho, D.L.: Special Issue: Diffusion maps and wavelets. Appl. Comput. Harmon. Anal. 21(1) (2006)

  6. Coifman, R.R., Maggioni, M.: Diffusion wavelets. Appl. Comput. Harmon. Anal. 21, 53–94 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Davies, E.B.: L p spectral theory of higher-order elliptic differential operators. Bull. Lond. Math. Soc. 29, 513–546 (1997)

    Article  MATH  Google Scholar 

  8. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice Hall, New York (1976)

    MATH  Google Scholar 

  9. do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Boston (1992)

    MATH  Google Scholar 

  10. Donoho, D.L., Grimes, C.: Image manifolds which are isometric to Euclidean space. http://www-stat.stanford.edu/~donoho/Reports/2002/WhenIsometry.pdf

  11. Donoho, D.L., Levi, O., Starck, J.-L., Martinez, V.J.: Multiscale geometric analysis for 3-D catalogues. http://www-stat.stanford.edu/~donoho/Reports/2002/MGA3D.pdf

  12. Dungey, N.: Some remarks on gradient estimates for heat kernels. Abstr. Appl. Anal. 2006, Art. ID 73020, 10 pp.

  13. Filbir, F., Themistoclakis, W.: Polynomial approximation on the sphere using scattered data. Math. Nachr. 281(5), 650–668 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Grigor’yan, A.: Upper bounds of derivatives of the heat kernel on an arbitrary complete manifold. J. Funct. Anal. 127(2), 363–389 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Grigor’yan, A.: Estimates of heat kernels on Riemannian manifolds. In: Davies, E.B., Safarov, Y. (eds.) Spectral Theory and Geometry, Edinburgh, 1998. London Math. Soc. Lecture Note Ser., vol. 273, pp. 140–225. Cambridge University Press, Cambridge (1999)

    Chapter  Google Scholar 

  16. Grigor’yan, A.: Heat kernels and function theory on metric measure spaces. Contemp. Math. 338, 143–172 (2003)

    MathSciNet  Google Scholar 

  17. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.-J.: Face recognition using laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 328–340 (2005)

    Article  Google Scholar 

  18. Jones, P.W., Maggioni, M., Schul, R.: Universal local parametrizations via heat kernels and eigenfunctions of the Laplacian. Manuscript, arXiv:0709.1975

  19. Keiner, J., Kunis, S., Potts, D.: Efficient reconstruction of functions on the sphere from scattered data. J. Fourier Anal. Appl. 13, 435–458 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kordyukov, Yu.A.: Lp-theory of elliptic differential operators on manifolds of bounded geometry. Acta Appl. Math. 23(3), 223–260 (1991)

    MATH  MathSciNet  Google Scholar 

  21. Korevaar, J.: Tauberian theory: A century of developments. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 329. Springer, Berlin (2004)

    MATH  Google Scholar 

  22. Korevaar, J.: A Tauberian boundedness theorem of the Ikehara type. Manuscript

  23. Le Gia, Q.T., Mhaskar, H.N.: Localized linear polynomial operators and quadrature formulas on the sphere. SIAM J. Numer. Anal. 47(1), 440–466 (2008)

    Article  MathSciNet  Google Scholar 

  24. Maggioni, M., Mhaskar, H.N.: Diffusion polynomial frames on metric measure spaces. Appl. Comput. Harmon. Anal. 24(3), 329–353 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Mhaskar, H.N.: Approximation theory and neural networks. In: Jain, P.K., Krishnan, M., Mhaskar, H.N., Prestin, J., Singh, D. (eds.) Wavelet Analysis and Applications, Proceedings of the International Workshop in Delhi, 1999, pp. 247–289. Narosa Publishing, New Delhi (2001)

    Google Scholar 

  26. Mhaskar, H.N.: Polynomial operators and local smoothness classes on the unit interval, II. Jaén J. Approx. 1(1), 1–25 (2009)

    MATH  MathSciNet  Google Scholar 

  27. Mhaskar, H.N., Prestin, J.: Polynomial frames: a fast tour. In: Chui, C.K., Neamtu, M., Schumaker, L. (eds.) Approximation Theory XI, Gatlinburg, 2004, pp. 287–318. Nashboro Press, Brentwood (2005)

    Google Scholar 

  28. Mhaskar, H.N., Narcowich, F.J., Ward, J.D.: Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature. Math. Comput. 70(235), 1113–1130 (2001). Corrigendum: Math. Comput. 71, 453–454 (2001)

    MATH  MathSciNet  Google Scholar 

  29. Minakshisundaram, S.: Eigenfunctions on Riemannian manifolds. J. Indian Math. Soc. (N.S.) 17, 159–165 (1953–1954)

    MathSciNet  Google Scholar 

  30. Nikolskii, S.M.: Approximation of Functions of Several Variables and Imbedding Theorems. Springer, New York (1975)

    Google Scholar 

  31. Oneill, B.: Elementary Differential Geometry. Elsevier, Amsterdam (2006)

    Google Scholar 

  32. Pesenson, I.: Bernstein-Nikolskii inequalities and Riesz interpolation formula on compact homogeneous manifolds. J. Approx. Theory 150(2), 175–198 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rivlin, T.J.: Chebyshev Polynomials. Wiley, New York (1990)

    MATH  Google Scholar 

  34. Schmid, D.: Scattered data approximation on the rotation group and generalizations. Ph.D. thesis, Technische Universität München (2009)

  35. Sikora, A.: Riesz transform, Gaussian bounds and the method of wave equation. Math. Z. 247, 643–662 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Taylor, M.E.: Partial Differential Equations, Basic Theory. Springer, New York (1996)

    MATH  Google Scholar 

  37. Xu, B.: Derivatives of the spectral function and Sobolev norms of eigenfunctions on a closed Riemannian manifold. Ann. Glob. Anal. Geom. 26, 231–252 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Filbir.

Additional information

Communicated by Karlheinz Gröechenig.

The research of F. Filbir was partially funded by Deutsche Forschungsgemeinschaft grant FI 883/3-1 and PO711/9-1.

The research of H.N. Mhaskar was supported, in part, by grant DMS-0605209 and its continuation DMS-0908037 from the National Science Foundation and grant W911NF-09-1-0465 from the US Army Research Office.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filbir, F., Mhaskar, H.N. A Quadrature Formula for Diffusion Polynomials Corresponding to a Generalized Heat Kernel. J Fourier Anal Appl 16, 629–657 (2010). https://doi.org/10.1007/s00041-010-9119-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-010-9119-4

Keywords

Mathematics Subject Classification (2000)

Navigation