Skip to main content
Log in

Partial Regularity of Strong Local Minimizers in the Multi-Dimensional Calculus of Variations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract.

Let Ω⊂ℝn be a bounded domain and F:𝕄→ℝ a given strongly quasiconvex integrand of class C 2 satisfying the growth condition \({{ |F(\xi)| \le c (1 + |\xi|^p)}}\) for some c>0 and 2≤p<∞. Consider the multiple integral \({{ I[u] = \int_{{\Omega}} \! F(\nabla u) }}\) where uW 1,p(Ω, ℝN). The main result of the paper is the proof that any strong local minimizer of I[·] is of class C 1,α loc for any α(0,1) on an open set of full n-dimensional measure. In the case of weak local minimizers we establish the same result under the extra assumption that the oscillations in the gradient of the minimizer are not too large. Without such an assumption weak local minimizers need not be partially regular as we show by a class of examples. We also briefly discuss the question of existence of strong local minimizers for I[·] and connections of our results to extensions of Weierstrass’ sufficiency theorem to the multi-dimensional setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Fusco, N.: A regularity theorem for minimizers of quasiconvex integrals. Arch. Ration. Mech. Anal. 99, 261–281 (1987)

    MathSciNet  MATH  Google Scholar 

  2. Acerbi, E., Fusco, N.: Local regularity for minimizers of non convex integrals. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 16, 603–636 (1989)

  3. Ball, J.M., Marsden, J.: Quasiconvexity at the boundary, positivity of the second variation and elastic stability. Arch. Ration. Mech. Anal. 86, 251–277 (1984)

    MathSciNet  MATH  Google Scholar 

  4. Bethuel, F.: On the singular set of stationary harmonic maps. Manuscripta Math. 78, 417–443 (1993)

    MathSciNet  MATH  Google Scholar 

  5. Campanato, S.: Proprietà di Hölderianità di alcune classi di funzioni. Ann. Sc. Norm. Sup. Pisa Ser. III 17, 175–188 (1963)

    MATH  Google Scholar 

  6. Carozza, M., Fusco, N., Mingione, G.: Partial regularity of minimizers of quasiconvex integrals with subquadratic growth. Ann. Mat. Pura Appl. 174, 141–164 (1998)

    MathSciNet  Google Scholar 

  7. Chipot, M., Evans, L.C.: Linearization at infinity and Lipschitz estimates for certain problems in the calculus of variations. Proc. Roy. Soc. Edin. A 102, 291–303 (1986)

    MathSciNet  MATH  Google Scholar 

  8. Dehn, M.: Die Gruppe der Abbildungsklassen. Acta Math. 69, 135–206 (1938)

    MATH  Google Scholar 

  9. De Giorgi, E.: Convergence problems for functionals and operators. In: Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, E. De Giorgi, et al. (eds), Bologna: Pitagora 1979, pp. 223–244.

  10. Dolzmann, G., Kristensen, J.: Higher integrability of minimizing Young measures. Preprint 2002

  11. Duzaar, F., Gastel, A., Grotowski, J.F.: Partial regularity for almost-minimizers of quasiconvex integrals. SIAM J. Math. Anal. 32, 665–687 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Evans, L.C.: Quasiconvexity and partial regularity in the calculus of variations. Arch. Ration. Mech. Anal. 95, 227–252 (1986)

    MathSciNet  MATH  Google Scholar 

  13. Evans, L.C.: Partial regularity for stationary harmonic maps into spheres. Arch. Ration. Mech. Anal. 116, 101–113 (1991)

    MathSciNet  MATH  Google Scholar 

  14. Evans, L.C., Gariepy, R.F.: Blow-up, compactness and partial regularity in the calculus of variations. Indiana Univ. Math. J. 36, 361–371 (1987)

    MathSciNet  MATH  Google Scholar 

  15. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of Sobolev functions. Studies in advanced mathematics, Boca Raton, 1992

  16. Fefferman, C., Stein, E.M.: H p spaces of several variables. Acta Math. 129, 137–193 (1972)

    MATH  Google Scholar 

  17. Firoozye, N.B.: Positive second variation and local minimizers in BMO-Sobolev spaces. Preprint no. 252, 1992, SFB 256, University of Bonn

    Google Scholar 

  18. Fuchs, M.: Regularity theorems for nonlinear systems of partial differential equations under natural ellipticity conditions. Analysis 7, 83–93 (1987)

    MathSciNet  MATH  Google Scholar 

  19. Fusco, N., Hutchinson, J.: C 1, α partial regularity of functions minimizing quasiconvex integrals. Manuscripta Math. 54, 121–143 (1985)

    MathSciNet  MATH  Google Scholar 

  20. Giaquinta, M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems. Princeton: Princeton University Press, 1983

  21. Giaquinta, M., Modica, G.: Partial regularity of minimizers of quasiconvex integrals. Ann. I.H.P. Analyse Non Linéaire 3, 185–208 (1986)

    MATH  Google Scholar 

  22. Giaquinta, M., Modica, G.: Remarks on the regularity of the minimizers of certain degenerate functionals. Manuscripta Math. 57, 55–99 (1986)

    MathSciNet  MATH  Google Scholar 

  23. Giusti, E., Miranda, M.: Sulla regularità delle soluzioni deboli di una classe di sistemi ellittici quasi-lineari. Arch. Ration. Mech. Anal. 31, 173–184 (1968)

    MATH  Google Scholar 

  24. Hamburger, C.: Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations. Ann. Mat. Pura Appl. Ser IV 169, 321–354 (1995)

    MathSciNet  MATH  Google Scholar 

  25. Hüsseinov, F.: Weierstrass condition for the general basic variational problem. Proc. Roy. Soc. Edin. A 125, 801–806 (1995)

    MathSciNet  Google Scholar 

  26. Iwaniec, T.: On L p-integrability in PDE’s and quasiregular mappings for large exponents. Ann. Acad. Sc. Fenn. Ser. A.I. 7, 301–322 (1982)

    MathSciNet  MATH  Google Scholar 

  27. John, F.: Uniqueness of nonlinear equilibrium for prescribed boundary displacement and sufficiently small strains. Comm. Pure Appl. Math. 25, 617–634 (1972)

    MATH  Google Scholar 

  28. Kohn, R.V., Sternberg, P.: Local minimisers and singular perturbations. Proc. Roy. Soc. Edin. A 111, 69–84 (1989)

    MathSciNet  MATH  Google Scholar 

  29. Kristensen, J.: Lower semicontinuity in spaces of weakly differentiable functions. Math. Ann. 313, 653–710 (1999)

    MathSciNet  MATH  Google Scholar 

  30. Landes, R.: Quasimonotone versus pseudomonotone. Proc. Roy. Soc. Edin. A 126, 705–717 (1996)

    MathSciNet  MATH  Google Scholar 

  31. Morrey, C.B.: Multiple integrals in the calculus of variations. Springer, 1966

  32. Müller, S., Šverák, V.: Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. Math. 157, 715–742 (2003)

    Google Scholar 

  33. Post, K., Sivaloganathan, J.: On homotopy conditions and the existence of multiple equilibria in finite elasticity. Proc. Roy. Soc. Edin. A 127, 595–614 (1997)

    MathSciNet  MATH  Google Scholar 

  34. Riviere, T.: Everywhere discontinuous maps into sphere. Acta Math. 175, 197–226 (1995)

    MathSciNet  MATH  Google Scholar 

  35. Schoen, R., Uhlenbeck, K.: A regularity theory for harmonic maps. J. Diff. Geom. 17, 307–335 (1982)

    MathSciNet  MATH  Google Scholar 

  36. Sivaloganathan, J.: The generalized Hamilton-Jacobi inequality and the stability of equilibria in non-linear elasticity. Arch. Ration. Mech. Anal. 107, 105–125 (1989)

    Google Scholar 

  37. Taheri, A.: Sufficiency theorems for local minimizers of the multiple integrals of the calculus of variations. Proc. Roy. Soc. Edin. A 131, 155–184 (2001)

    MathSciNet  MATH  Google Scholar 

  38. Taheri, A.: Quasiconvexity and uniqueness of stationary points in the multi-dimensional calculus of variations. To appear in Proc. Am. Math. Soc., 2003

  39. Taheri, A.: Local minimizers and quasiconvexity - the impact of Topology. Max-Planck-Institute MIS (Leipzig) Preprint-Nr. 27, 2002

    Google Scholar 

  40. Vodopyanov, S.K., Goldstein, V.M.: Quasiconformal mappings and spaces of functions with generalized first derivatives. Siberian Math. J. 17, 515–531 (1977)

    MATH  Google Scholar 

  41. Zhang, K.: On the Dirichlet problem for a class of quasilinear elliptic systems of PDEs in divergence form. In: Partial Differential Equations, Proc. Tranjin 1986. Ed. S.S. Chern. Springer, Lecture Notes in Mathematics 1306, 1988, pp. 262–77

  42. Zhang, K.: Remarks on quasiconvexity and stability of equilibria for variational integrals. Proc. Am. Math. Soc. 114, 927–930 (1992)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. Müller

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristensen, J., Taheri, A. Partial Regularity of Strong Local Minimizers in the Multi-Dimensional Calculus of Variations. Arch. Rational Mech. Anal. 170, 63–89 (2003). https://doi.org/10.1007/s00205-003-0275-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-003-0275-4

Keywords

Navigation