Skip to main content
Log in

The Interaction between Quasilinear Elastodynamics and the Navier-Stokes Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The interaction between a viscous fluid and an elastic solid is modeled by a system of parabolic and hyperbolic equations, coupled to one another along the moving material interface through the continuity of the velocity and traction vectors. We prove the existence and uniqueness (locally in time) of strong solutions in Sobolev spaces for quasilinear elastodynamics coupled to the incompressible Navier-Stokes equations. Unlike our approach in [5] for the case of linear elastodynamics, we cannot employ a fixed-point argument on the nonlinear system itself, and are instead forced to regularize it by a particular parabolic artificial viscosity term. We proceed to show that with this specific regularization, we obtain a time interval of existence which is independent of the artificial viscosity; together with a priori estimates, we identify the global solution (in both phases), as well as the interface motion, as a weak limit in strong norms of our sequence of regularized problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beale, J.T.: Large-time regularity of viscous surface waves. Arch. Ration. Mech. Anal. 84, 307–352 (1983)

    Google Scholar 

  2. Chambolle, A., Desjardins, B., Esteban, M.J., Grandmont, C.: Existence of weak solutions for an unsteady fluid-plate interaction problem. Preprint.

  3. Ciarlet, P.G.: Mathematical Elasticity, Volume I: Three-Dimensional Elasticity. North-Holland, Amsterdam, 1986

  4. Conca,C., San Martin, J., Tucsnak, M.: Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid. Comm. Partial Differential Equations 25, 1019–1042 (2000)

    Article  MathSciNet  Google Scholar 

  5. Coutand, D., Shkoller, S.: Motion of an Elastic Solid inside an Incompressible Viscous Fluid. Arch. Ration. Mech. Anal. 176, 25–102 (2005)

    Article  MathSciNet  Google Scholar 

  6. Dafermos, C.M., Hrusa, W.J.: Energy methods for quasilinear hyperbolic initial boundary value problems. Applications to elastodynamics. Arch. Ration. Mech. Anal. 87, 267–292 (1985)

    Google Scholar 

  7. Desjardins, B., Esteban, M.J.: Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146, 59–71 (1999)

    Article  MathSciNet  Google Scholar 

  8. Desjardins, B., Esteban, M.J., Grandmont, C., Le Tallec, P.: Weak solutions for a fluid-structure interaction problem. Rev. Mat. Complut. 14, 523–538 (2001)

    Article  MathSciNet  Google Scholar 

  9. Ebin, D.G., Simanca, S.R.: Deformations of incompressible bodies with free boundaries. Arch. Ration. Mech. Anal. 103, 61–97 (1992)

    Article  MathSciNet  Google Scholar 

  10. Flori, F., Orenga, P.: Fluid-structure interaction: analysis of a 3-D compressible model. Ann. Inst. H. Poincaré Anal. Non Linéaire 17, 753–777 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  11. Grandmont, C.: Existence et unicité de solutions d'un problème de couplage fluide-structure bidimensionnel stationnaire. C. R. Acad. Sci. Paris Sér. I. 326, 651–656 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  12. Grandmont, C., Maday, Y.: Existence for unsteady fluid-structure interaction problem. Math. Model. Numer. Anal. 34, 609–636 (2000)

    Article  MathSciNet  Google Scholar 

  13. Gunzburger, M.D., Lee, H.-C., Seregin, G.A.: Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions. J. Math. Fluid Mech. 2, 219–266 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  14. Heil, M.: Stokes flow in an elastic tube – a large-displacement fluid-structure interaction problem. Int. J. Numer. Meth. Fluids 28, 243–265 (1998)

    Article  Google Scholar 

  15. Hillairet, M., Serre, D.: Chute stationnaire d'un solide dans un fluide visqueux incompressible le long d'un plan incliné. Ann. Inst. H. Poincaré Anal. Non Linéaire 20, 779–803 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  16. Hughes, T.J.R., Kato, T., Marsden, J.E.: Well-posed quasi-linear hyperbolic systems with applications to non-linear elastodynamics and general relativity. Arch. Ration. Mech. Anal. 63, 273–294 (1977)

    Article  Google Scholar 

  17. Hrusa, W.J., Renardy, M.: An existence theorem for the Dirichlet problem in the elastodynamics of incompressible materials. Arch. Ration. Mech. Anal. 102, 95–117 (1988)

    Article  MathSciNet  Google Scholar 

  18. Liu, C., Walkington, N.J.: An Eulerian description of fluids containing visco-elastic particles. Arch. Ration. Mech. Anal. 159, 229–252 (2001)

    Article  MathSciNet  Google Scholar 

  19. Sablé-Tougeron, M.: Existence pour un problème de l'élastodynamique Neumann non linéaire en dimension 2. Arch. Ration. Mech. Anal. 101, 261–292 (1988)

    Article  MathSciNet  Google Scholar 

  20. Serre, D.: Chute libre d'un solide dans un fluide visqueux incompressible: Existence. Japan J. Appl. Math. 4, 33–73 (1987)

    Article  Google Scholar 

  21. Solonnikov, V.A.: Solvability of the problem of evolution of a viscous incompressible fluid bounded by a free surface on a finite time interval. St. Petersburg Math. J. 3, 189–220 (1992)

    MathSciNet  Google Scholar 

  22. Weinberger, H.F.: Variational properties of steady fall in Stokes flow. J. Fluid Mech. 52, 321–344 (1972)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Shkoller.

Additional information

Communicated by V.Šverák

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coutand, D., Shkoller, S. The Interaction between Quasilinear Elastodynamics and the Navier-Stokes Equations. Arch. Rational Mech. Anal. 179, 303–352 (2006). https://doi.org/10.1007/s00205-005-0385-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-005-0385-2

Keywords

Navigation