Skip to main content
Log in

Cauchy Problem for the Vlasov–Poisson–Boltzmann System

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The dynamics of dilute electrons can be modelled by the fundamental Vlasov–Poisson–Boltzmann system which describes mutual interactions of the electrons through collisions in the self-consistent electric field. In this paper, it is shown that any smooth perturbation of a given global Maxwellian leads to a unique global-in-time classical solution when either the mean free path is small or the background charge density is large. Moreover, the solution converges to the global Maxwellian when time tends to infinity. The analysis combines the techniques used in the study of conservation laws with the decomposition of the Boltzmann equation introduced in [17, 19] by obtaining new entropy estimates for this physical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boltzmann L. (1964) (translated by Stephen G. Brush): Lectures on Gas Theory. Dover Publications, Inc. New York

    Google Scholar 

  2. Cercignani C. The Boltzmann Equation and its Applications. Applied Mathematical Sciences, 67. Springer-Verlag, New York, xii+455 pp, 1988

  3. Cercignani, C., Illner, R., Pulvirenti, M. The mathematical theory of dilute gases. Applied Mathematical Sciences, 106. Springer-Verlag, New York, viii+347 pp, 1994

  4. Desvillettes L., Dolbeault J. (1991) On long time asymptotics of the Vlasov-Poisson-Boltzmann equation. Comm. Partial Differential Equations 16, 451–489

    MathSciNet  Google Scholar 

  5. Diperna R.J., Lions P.-L. (1989) Global weak solutions ofVlasov-Maxwell systems. Comm. Pure Appl. Math. 42, 729–757

    MathSciNet  Google Scholar 

  6. Glassey, R.T. The Cauchy problem in kinetic theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, xii+241 pp, 1996

  7. Glassey R.T., Strauss W.A. (1999) Decay of the linearized Boltzmann-Vlasov system. Transport Theory Statist. Phys. 28, 135–156

    MathSciNet  Google Scholar 

  8. Golse F., Perthame B., Sulem C. (1986) On a boundary layer problem for the nonlinear Boltzmann equation. Arch. Ration Mech. Anal. 103, 81–96

    Article  MathSciNet  Google Scholar 

  9. Grad H. (1963) Asymptotic theory of the boltzmann equation II. Rarefied Gas Dynamics (Laurmann, J.A. Ed.). Vol. 1, Academic Press, New York, pp. 26–59

    Google Scholar 

  10. Guo Y. (2002) The Vlasov-Poisson-Boltzmann system near Maxwellians. Comm. Pure Appl. Math. 55, 1104–1135

    Article  MathSciNet  Google Scholar 

  11. Guo Y. (2003) The Vlasov-Maxwell-Boltzmann system near Maxwellians. Invent. Math. 153, 593–630

    Article  MathSciNet  Google Scholar 

  12. Guo Y. (2001) The Vlasov-Poisson-Boltzmann system near vacuum. Comm. Math. Phys. 218, 293–313

    Article  ADS  MathSciNet  Google Scholar 

  13. Kawashima S., Matsumura A. (1985) Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion. Comm. Math. Phys. 101, 97–127

    Article  ADS  MathSciNet  Google Scholar 

  14. Lions, P.-L. On kinetic equations. Proceedings of the International Congress of Mathematicians Kyoto, 1173–1185, Math. Soc. Japan, 1991

  15. Liu T.-P., Yang T., Yu S.-H. (2004) Energy method for the Boltzmann equation. Physica D 188, 178–192

    Article  ADS  MathSciNet  Google Scholar 

  16. Liu T.-P., Yang, T., Yu, S.-H., Zhao, H.-J. Nonlinear stability of rarefaction waves for the Boltzmann equation. Arch. Ration Mech. Anal. DOI: 10.1007/s00205-005-0414-1

  17. Liu T.-P., Yu S.-H. (2004) Boltzmann equation: Micro-macro decompositions and positivity of shock profiles. Comm. Math. Phys. 246, 133–179

    Article  ADS  MathSciNet  Google Scholar 

  18. Mischler S. (2000) On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system. Comm. Math. Phys. 210, 447–466

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Yang.

Additional information

Communicated by C.M. Dafermos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, T., Yu, H. & Zhao, H. Cauchy Problem for the Vlasov–Poisson–Boltzmann System. Arch Rational Mech Anal 182, 415–470 (2006). https://doi.org/10.1007/s00205-006-0009-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-006-0009-5

Keywords

Navigation