Skip to main content
Log in

An Application of the Modular Function in Nonlocal Variational Problems

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Using the modular function and its invariance under the action of a modular group and an heuristic reduction of a mathematical model, we present a mathematical account of a hexagonal pattern selection observed in di-block copolymer melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti G. and Müller S. (2001). A new approach to variational problems with multiple scales. Comm. Pure Appl. Math. 54: 761–825

    Article  MATH  MathSciNet  Google Scholar 

  2. Bahiana M. and Oono Y. (1990). Cell dynamical system approach to block copolymers. Phys. Rev. 41: 6763–6771

    Article  ADS  Google Scholar 

  3. Bates F.S. and Fredrickson G.H. (1999). Block Copolymers-Designer Soft Materials. Physics Today 32: 32–38

    Google Scholar 

  4. Chen X. and Oshita Y. (2005). Periodicity and uniqueness of global minimizers of an energy functional containing a long-range interaction. SIAM J. Math. Anal. 37: 1299–1332

    Article  MathSciNet  Google Scholar 

  5. Choksi R. and Ren X.F. (2003). On the derivation of a density functional theory for microphase separation of diblock copolymers. J. Stat. Phys. 113: 151–176

    Article  MATH  MathSciNet  Google Scholar 

  6. Fife P. and Hilhorst D. (2001). The Nishiura-Ohnishi Free Boundary Problem in the 1D case. SIAM J. Math. Anal. 33: 589–606

    Article  MATH  MathSciNet  Google Scholar 

  7. Hamley, I.W.: The Physics of Block Copolymers, Oxford University Press, Oxford, 1999

    Google Scholar 

  8. Hashimoto T., Shibayama M. and Kawai H. (1983). Ordered Structure in Block Polymer Solutions. 4. Scaling Rules on Size of Fluctuations with Block Molecular Weight, Concentration and Temperature in Segregation and Homogeneous Regimes. Macromolecules 16: 1093–1101

    Article  ADS  Google Scholar 

  9. Hashimoto T., Shibayama M. and Kawai H. (1980). Domain-Boundary Structure of Styrene-Isoprene Block Copolymer Films Cast from Solution. 4. Molecular-Weight Dependence of Lamellar Microdomains. Macromolecules 13: 1237–1247

    Article  ADS  Google Scholar 

  10. Henry M., Hilhorst D. and Nishiura Y. (2003). Singular limit of a second order nonlocal parabolic equation of censervative type arising in the micro-phase separation of diblock copolymers. Hokkaido Math. J. 32: 561–622

    MATH  MathSciNet  Google Scholar 

  11. Lang, S.: Introduction to Arakelov theory. Springer-Verlag, 1988

  12. Leibler L. (1980). Theory of Microphase Separation in Block Copolymers. Macromolecules 13: 1602–1617

    Article  ADS  Google Scholar 

  13. Lehner, J.: Discontinuous groups and automorphic functions American mathematical society, 1964

  14. Modica L. (1987). The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98: 123–142

    Article  MATH  MathSciNet  Google Scholar 

  15. Müller S. (1993). Singular perturbations as a selection criterion for periodic minimizing sequences. Calc. Var. Partial Differential Equations 1: 169–204

    Article  MATH  MathSciNet  Google Scholar 

  16. Nishiura Y. and Ohnishi I. (1995). Some mathematical aspects of the micro-phase separation in diblock copolymers. Phys. D 84: 31–39

    Article  MathSciNet  Google Scholar 

  17. Ohta T. and Kawasaki K. (1986). Equilibrium morphology of block copolymer melts. Macromolecules 19: 2621–2632

    Article  ADS  Google Scholar 

  18. Ohnishi I., Nishiura Y., Imai M. and Matsushita Y. (1999). Analytical solution describing the phase separation driven by a free energy functional containing a long-range interaction term. Chaos 9: 329–341

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Oshita Y. (2003). On stable stationary solutions and mesoscopic patterns for FitzHugh–Nagumo equations in higher dimensions. J. Differential Equations 188: 110–134

    Article  MATH  MathSciNet  Google Scholar 

  20. Oshita Y. (2004). Stable stationary patterns and interfaces arising in reaction-diffusion systems. SIAM J. Math. Anal. 36: 479–497

    Article  MATH  MathSciNet  Google Scholar 

  21. Ren X. and Wei J. (2002). Concentrically layered energy equilibria of the di-block copolymer problem. European J. Appl. Math. 13: 479–496

    Article  MATH  MathSciNet  Google Scholar 

  22. Ren X. and Wei J. (2003). On energy minimizers of the diblock copolymer problem. Interfaces Free Bound. 5: 193–238

    Article  MATH  MathSciNet  Google Scholar 

  23. Ren X. and Wei J. (2003). On the spectra of three-dimensional lamellar solutions of the Diblock copolymer problem. SIAM J. Math. Anal. 35: 1–32

    Article  MATH  MathSciNet  Google Scholar 

  24. Theil F. (2006). A proof of crystallization in two dimensions. Comm. Math. Phys. 262: 209–236

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihito Oshita.

Additional information

Communicated by F. Otto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Oshita, Y. An Application of the Modular Function in Nonlocal Variational Problems. Arch Rational Mech Anal 186, 109–132 (2007). https://doi.org/10.1007/s00205-007-0050-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-007-0050-z

Keywords

Navigation