Skip to main content
Log in

The Low Mach Number Limit for the Full Navier–Stokes–Fourier System

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the low Mach number asymptotic limit for solutions to the full Navier–Stokes–Fourier system, supplemented with ill-prepared data and considered on an arbitrary time interval. Convergencetowards the incompressible Navier–Stokes equations is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alazard, T.: Low mach number limit of the full Navier-Stokes equations. To appear in Arch. Ration. Mech. Anal. (2005)

  2. Boccardo L., Dall’Aglio A., Gallouet T., Orsina L. (1997). Nonlinear parabolic equations with measure data. J. Funct. Anal. 147, 237–258

    Article  MATH  MathSciNet  Google Scholar 

  3. Bresch D., Desjardins B., Grenier E., Lin C.-K. (2002). Low Mach number limit of viscous polytropic flows: Formal asymptotics in the periodic case. Stud. Appl. Math. 109, 125–149

    Article  MATH  MathSciNet  Google Scholar 

  4. Buet, C., Després, B.: Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics. Preprint 2003

  5. Danchin R. (2002). Zero Mach number limit for compressible flows with periodic boundary conditions. Amer. J. Math. 124, 1153–1219

    Article  MATH  MathSciNet  Google Scholar 

  6. Desjardins B., Grenier E., Lions P.-L., Masmoudi N. (1999). Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78, 461–471

    Article  MathSciNet  Google Scholar 

  7. DiPerna R.J., Lions P.-L. (1989). Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Ducomet B., Feireisl E. (2004). On the dynamics of gaseous stars. Arch. Ration. Mech. Anal. 174, 221–266

    Article  MATH  MathSciNet  Google Scholar 

  9. Ebin D.B. (1977). The motion of slightly compressible fluids viewed as a motion with strong constraining force. Ann. of Math. 105(2): 141–200

    Article  MathSciNet  Google Scholar 

  10. Ebin, D.B.: Viscous fluids in a domain with frictionless boundary. Global Analysis - Analysis on Manifolds. (Ed. H. Kurke, J. Mecke, H. Triebel, R. Thiele) Teubner-Texte zur Mathematik 57, Teubner, Leipzig, 93–110 (1983)

  11. Feireisl E. (2003). Dynamics of viscous compressible fluids. Oxford University Press, Oxford

    Google Scholar 

  12. Feireisl, E.: Mathematical theory of compressible, viscous, and heat conducting fluids. To appear in Comput. Appl. Math. (2007)

  13. Feireisl E., Novotný (2005). On a simple model of reacting compressible flows arising in astrophysics. Proc. Roy. Sect. Soc. Edinburgh Sect. A 135, 1169–1194

    Article  MATH  Google Scholar 

  14. Gallavotti G. (1999). Statistical mechanics: A short treatise. Springer-Verlag, Heidelberg

    MATH  Google Scholar 

  15. Gallavotti G. (2002). Foundations of fluid dynamics. Springer-Verlag, New York

    Google Scholar 

  16. Hagstrom T., Lorenz J. (2002). On the stability of approximate solutions of hyperbolic-parabolic systems and all-time existence of smooth, slightly compressible flows. Indiana Univ. Math. J. 51: 1339–1387

    Article  MathSciNet  Google Scholar 

  17. Hoff D. (1998). The zero Mach number limit of compressible flows. Comm. Math. Phys. 192, 543–554

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Hoff D. (2002). Dynamics of singularity surfaces for compressible viscous flows in two space dimensions. Comm. Pure Appl. Math. 55, 1365–1407

    Article  MATH  MathSciNet  Google Scholar 

  19. Klainerman S., Majda A. (1981). Compressible and incompressible fluids. Comm. Pure Appl. Math. 34, 481–524

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Klein R., Botta N., Schneider T., Munz C.D., Roller S., Meister A., Hoffmann L., Sonar T. (2001). Asymptotic adaptive methods for multi-scale problems in fluid mechanics. J. Engrg. Math. 39, 261–343

    Article  MATH  MathSciNet  Google Scholar 

  21. Lin C.K. (1995). On the incompressible limit of the compressible Navier–Stokes equations. Comm. Partial Differential Equations 20, 677–707

    Article  MATH  MathSciNet  Google Scholar 

  22. Lions P.-L., Masmoudi N. (1998). Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77, 585–627

    MATH  MathSciNet  Google Scholar 

  23. Métivier G., Schochet S. (2001) The incompressible limit of the non-isentropic Euler equations. Arch. Ration. Mech. Anal. 158, 61–90

    Article  MATH  MathSciNet  Google Scholar 

  24. Métivier G., Schochet S. (2003). Averaging theorems for conservative systems and the weakly compressible Euler equations. J. Differential Equations 187, 106–183

    Article  MATH  MathSciNet  Google Scholar 

  25. Müller, I., Ruggeri, T.: Rational extended thermodynamics. Springer Tracts in Natural Philosophy 37. Springer-Verlag, Heidelberg, 1998

  26. Oxenius J. (1986). Kinetic theory of particles and photons. Springer-Verlag, Berlin

    Google Scholar 

  27. Rajagopal K.R., Shrinivasa A.R. (2004). On thermodynamical restrictions of continua. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460, 631–651

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Schochet S. (1986). The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit. Comm. Math. Phys. 104, 49–75

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Schochet S. (1994). Fast singular limits of hyperbolic pde’s. J. Differential Equations 114, 476–512

    Article  MATH  MathSciNet  Google Scholar 

  30. Schochet S. (2005). The mathematical theory of low Mach number flows. M2AN 39, 441–458

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Feireisl.

Additional information

Communicated by C.M. Dafermos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feireisl, E., Novotný, A. The Low Mach Number Limit for the Full Navier–Stokes–Fourier System. Arch Rational Mech Anal 186, 77–107 (2007). https://doi.org/10.1007/s00205-007-0066-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-007-0066-4

Keywords

Navigation