Skip to main content
Log in

Vortices for a Rotating Toroidal Bose–Einstein Condensate

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We construct local minimizers of the Gross–Pitaevskii energy, introduced to model Bose–Einstein condensates (BEC) in the Thomas–Fermi regime which are subject to a uniform rotation. Our sample domain is taken to be a solid torus of revolution in \({\mathbb{R}}^3\) with starshaped cross-section. We show that for angular speeds ωε = O(|ln ε|) there exist local minimizers of the energy which exhibit vortices, for small enough values of the parameter ε. These vortices concentrate at one or several planar arcs (represented by integer multiplicity rectifiable currents) which minimize a line energy, obtained as a Γ-limit of the Gross–Pitaevskii functional. The location of these limiting vortex lines can be described under certain geometrical hypotheses on the cross-sections of the torus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aftalion, A., Alama, S., Bronsard, L.: Giant vortex and the breakdown of strong pinning in a rotating Bose–Einstein condensate. Arch. Ration. Mech. Anal. (to appear)

  2. Aftalion A., Danaila I. (2004) Giant vortices in combined harmonic and quartic traps. Phys. Rev. A 69: 033608

    Article  ADS  Google Scholar 

  3. Aftalion A., Jerrard R.L. (2002) On the shape of vortices for a rotating Bose–Einstein condensate. Phys. Rev. A 66: 023611

    Article  ADS  Google Scholar 

  4. Aftalion A., Jerrard R. (2003) Properties of a single vortex solution in a rotation Bose–Einstein condensate. C. R. Acad. Sci. Paris, Ser. I 336: 713–718

    MATH  MathSciNet  Google Scholar 

  5. Alama, S., Bronsard, L., Montero, A.: On the Ginzburg–Landau Model of a Superconducting Ball in a Uniform Field. Annales de l’Institut Henri Poincaré, Analyse non linéaire (to appear)

  6. Alberti, G., Baldo, S., Orlandi, G.: Variational convergence for functionals of the Ginzburg–Landau type (preprint, 2003)

  7. Bethuel F., Brezis H., Helein F. (1994) Ginzburg–Landau Vortices. Birkhäuser, Basel

    MATH  Google Scholar 

  8. Bethuel F., Brezis H., Orlandi G. (2001) Asymptotics for the Ginzburg–Landau equation in arbitrary dimensions. J. Funct. Anal. 186: 432–520

    Article  MATH  MathSciNet  Google Scholar 

  9. Bretin V., Stock S., Seurin Y., Dalibard J. (2004) Fast rotation of a Bose–Einstein condensate. Phys. Rev. Lett. 92: 050403

    Article  ADS  Google Scholar 

  10. Brezis H., Oswald L. (1986) Remarks on sublinear elliptic equations. Nonlin. Anal. 10(1): 55–64

    Article  MATH  MathSciNet  Google Scholar 

  11. Federer H. (1969) Geometric Measure Theory. Springer, New York

    MATH  Google Scholar 

  12. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser

  13. Jerrard R.L.: More about Bose–Einstein condensates (preprint, 2003)

  14. Jerrard, R., Montero, J.A.: (in preparation)

  15. Jerrard R., Montero J.A., Sternberg P. (2004) Local minimizers of the Ginzburg–Landau energy with magnetic field in three dimensions. Commun. Math. Phys. 249(3): 549–577

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Jerrard R., Soner H.M. (2002) The Jacobian and the Ginzburg–Landau energy. Calc. Var. PDE 14(2): 151–191

    Article  MATH  MathSciNet  Google Scholar 

  17. Kasamatsu K., Tsubota M., Ueda M. (2002) Giant hole and circular superflow in a fast rotating Bose–Einstein condensate. Phys. Rev. B 66: 053606

    ADS  Google Scholar 

  18. Kohn R.V., Sternberg P. (1989) Local minimizers and singular perturbations. Proc. R. Soc. Edin. 111A: 69–84

    MathSciNet  Google Scholar 

  19. Lassoued L., Mironescu P. (1999) Ginzburg–Landau type energy with discontinuous constraint. J. Anal. Math. 77: 1– 26

    Article  MATH  MathSciNet  Google Scholar 

  20. Montero J.A., Sternberg P., Ziemer W. (2004) Local minimizers with vortices to the Ginzburg–Landau system in three dimensions. CPAM LVII: 0099–0125

    MathSciNet  Google Scholar 

  21. Sandier E., Serfaty S. (2004) A product estimate for Ginzburg-Landau and corollaries. J. Funct. Anal. 211(1): 219–244

    Article  MATH  MathSciNet  Google Scholar 

  22. Simon, L.: Lectures on geometric measure theory. Proceedings Centre for Mathematical Analysis, Australian National University, vol. 3, 1983

  23. Smoller J. (1994) Shock waves and reaction–diffusion equations, 2nd edn Grundlehren der mathematischen Wissenschaften, vol 258. Springer, New York

    Google Scholar 

  24. Ziemer W.P. (1989) Weakly Differentiable Functions. Springer, Heidelberg

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stan Alama.

Additional information

Communicated by D. Kinderlehrer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alama, S., Bronsard, L. & Montero, J.A. Vortices for a Rotating Toroidal Bose–Einstein Condensate. Arch Rational Mech Anal 187, 481–522 (2008). https://doi.org/10.1007/s00205-007-0077-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-007-0077-1

Keywords

Navigation