Skip to main content
Log in

Upper Maxwellian Bounds for the Spatially Homogeneous Boltzmann Equation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

For the spatially homogeneous Boltzmann equation with cutoff hard potentials, it is shown that solutions remain bounded from above uniformly in time by a Maxwellian distribution, provided the initial data have a Maxwellian upper bound. The main technique is based on a comparison principle that uses a certain dissipative property of the linear Boltzmann equation. Implications of the technique to propagation of upper Maxwellian bounds in the spatially-inhomogeneous case are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arkeryd L.: On the Boltzmann equation. I. Existence II. The full initial value problem. Arch. Ration. Mech. Anal. 45, 1–34 (1972)

    MATH  Google Scholar 

  2. Arkeryd L.: L estimates for the space-homogeneous Boltzmann equation. J. Stat. Phys. 31(2), 347–361 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Arkeryd L., Esposito R., Pulvirenti M.: The Boltzmann equation for weakly inhomogeneous data. Comm. Math. Phys. 111(3), 393–407 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bellomo N., Toscani G.: On the Cauchy problem for the nonlinear Boltzmann equation: global existence, uniqueness and asymptotic stability. J. Math. Phys. 26(2), 334–338 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bobylev, A.V.: The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules. Mathematical Physics Reviews, Vol. 7, vol. 7 of Soviet Sci. Rev. Sect. C Math. Phys. Rev. Harwood Academic, Churchill, 1988, pp. 111–233

  6. Bobylev A.V.: Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems. J. Stat. Phys. 88(5–6), 1183–1214 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bobylev A.V., Gamba I. M., Panferov V.: Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions. J. Stat. Phys. 116(5–6), 1651–1682 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Carleman T.: Sur la théorie de l’équation intégrodifférentielle de Boltzmann. Acta Math. 60, 91–146 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carleman, T.: Problèmes mathématiques dans la théoriecinétique des gaz. Publ. Sci. Inst. Mittag-Leffler, 2. Almqvist and Wiksell, Uppsala, 1957

  10. Cercignani C., Illner R., Pulvirenti M.: The Mathematical Theory of Dilute Gases, vol. 106 of Applied Mathematical Sciences. Springer, New York (1994)

    Book  MATH  Google Scholar 

  11. Crandall M.G., Tartar L.: Some relations between nonexpansive and order preserving mappings. Proc. Am. Math. Soc. 78(3), 385–390 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Desvillettes L.: Some applications of the method of moments for the homogeneous Boltzmann and Kac equations. Arch. Ration. Mech. Anal. 123(4), 387–404 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Di Blasio G.: Differentiability of spatially homogeneous solutions of the Boltzmann equation in the non Maxwellian case. Comm. Math. Phys. 38, 331–340 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. DiPerna R., Lions P.-L.: On the Cauchy problem for the Boltzmann equation: Global existence and weak stability. Ann. Math. 130, 321–366 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Elmroth T.: Global boundedness of moments of solutions of the Boltzmann equation for forces of infinite range. Arch. Ration. Mech. Anal. 82(1), 1–12 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Evans L.C.: Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence (1998)

    Google Scholar 

  17. Evans L.C., Gariepy R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  18. Gamba I.M., Panferov V., Villani C.: On the Boltzmann equation for diffusively excited granular media. Comm. Math. Phys. 246(3), 503–541 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Gel’fand, I.M., Shilov, G.E.: Generalized Functions, Vol. 1. Academic Press, New York, London, 1964. Translation of the second Russian edition, Moscow, 1958.

  20. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd ed., Vol. 224 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin, 1983

  21. Goudon T.: Generalized invariant sets for the Boltzmann equation. Math. Models Methods Appl. Sci. 7(4), 457–476 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grad, H.: Principles of the kinetic theory of gases. In: Handbuch der Physik, Vol.12 (Ed. S. Flügge). Springer, Berlin, 1958, 205–294

  23. Hamdache K.: Existence in the large and asymptotic behaviour for the Boltzmann equation. Jpn. J. Appl. Math. 2(1), 1–15 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Illner R., Shinbrot M.: The Boltzmann equation: global existence for a rare gas in an infinite vacuum. Comm. Math. Phys. 95(2), 217–226 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Kaniel S., Shinbrot M.: The Boltzmann equation. I. Uniqueness and local existence. Comm. Math. Phys. 58(1), 65–84 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Landau, L.D., Lifshitz, E. M.: Mechanics, 3rd edn. Course of theoretical physics, Vol. 1. Pergamon Press, Oxford, 1976. Translation of the third Russian edition, Moscow, 1973

  27. Lanford, III, O.E.: Time evolution of large classical systems. In: Dynamical Systems, Theory and Applications (Recontres, Battelle Res. Inst., Seattle, Wash., 1974), 1–111. Springer, Berlin, 1975. Lecture Notes in Phys., Vol. 38

  28. Lions P.-L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications. II. J. Math. Kyoto Univ. 34(2), 429–461 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mischler S., Perthame B.: Boltzmann equation with infinite energy: renormalized solutions and distributional solutions for small initial data and initial data close to a Maxwellian. SIAM J. Math. Anal. 28(5), 1015–1027 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mischler S., Wennberg B.: On the spatially homogeneous Boltzmann equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 16(4), 467–501 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Povzner A.J.: On the Boltzmann equation in the kinetic theory of gases. Mat. Sb. (N.S.) 58(100), 65–86 (1962)

    MathSciNet  MATH  Google Scholar 

  32. Pulvirenti A., Wennberg B.: A Maxwellian lower bound for solutions to the Boltzmann equation. Comm. Math. Phys. 183(1), 145–160 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Vedenjapin, V.V.: On an inequality for convex functions, and on an estimate of the collision integral of the Boltzmann equation for a gas of elastic spheres. Dokl. Akad. Nauk SSSR 226(5) 997–1000, (1976). English translation in Soviet Math. Dokl. 17(1) (1976) 218–222

  34. Villani, C.: A Review of Mathematical Topics in Collisional Kinetic Theory. Handbook of mathematical fluid dynamics, Vol. I. North-Holland, Amsterdam, 2002, 71–305

  35. Wennberg B.: An example of nonuniqueness for solutions to the homogeneous Boltzmann equation. J. Stat. Phys. 95(1–2), 469–477 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Gamba.

Additional information

Communicated by Y. Brenier

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamba, I.M., Panferov, V. & Villani, C. Upper Maxwellian Bounds for the Spatially Homogeneous Boltzmann Equation. Arch Rational Mech Anal 194, 253–282 (2009). https://doi.org/10.1007/s00205-009-0250-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-009-0250-9

Keywords

Navigation