Skip to main content
Log in

Asymptotic Stability of the Wave Equation on Compact Manifolds and Locally Distributed Damping: A Sharp Result

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Let (M, g) be a n-dimensional (\({n\geqq 2}\)) compact Riemannian manifold with boundary where g denotes a Riemannian metric of class C . This paper is concerned with the study of the wave equation on (M, g) with locally distributed damping, described by

$$ \left. \begin{array}{l} u_{tt} - \Delta_{{\bf g}}u+ a(x)\,g(u_{t})=0,\quad\hbox{on\ \thinspace}{M}\times \left] 0,\infty\right[ ,u=0\,\hbox{on}\,\partial M \times \left] 0,\infty \right[, \end{array} \right. $$

where ∂M represents the boundary of M and a(xg(u t ) is the damping term. The main goal of the present manuscript is to generalize our previous result in Cavalcanti et al. (Trans AMS 361(9), 4561–4580, 2009), treating the conjecture in a more general setting and extending the result for n-dimensional compact Riemannian manifolds (M, g) with boundary in two ways: (i) by reducing arbitrarily the region \({M_\ast \subset M}\) where the dissipative effect lies (this gives us a totally sharp result with respect to the boundary measure and interior measure where the damping is effective); (ii) by controlling the existence of subsets on the manifold that can be left without any dissipative mechanism, namely, a precise part of radially symmetric subsets. An analogous result holds for compact Riemannian manifolds without boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alabau-Boussouira F.: Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems. Appl. Math. Optim. 51(1), 61–105 (2005)

    Article  MathSciNet  Google Scholar 

  2. Bardos C., Lebeau G., Rauch J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30(5), 1024–1065 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bellassoued M.: Decay of solutions of the elastic wave equation with a localized dissipation. Annales de la Faculté des Sciences de Toulouse XII(3), 267–301 (2003)

    MathSciNet  Google Scholar 

  4. Cavalcanti M.M., Domingos Cavalcanti V.N., Fukuoka R., Soriano J.A.: Uniform stabilization of the wave equation on compact surfaces and locally distributed damping. Methods Appl. Anal. 15(4), 405–426 (2008)

    MATH  MathSciNet  Google Scholar 

  5. Cavalcanti M.M., Domingos Cavalcanti V.N., Fukuoka R., Soriano J.A.: Uniform stabilization of the wave equation on compact surfaces and locally distributed damping—a sharp result. Trans. AMS 361(9), 4561–4580 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cavalcanti M.M., Oquendo H.P.: Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J. Control Optim. 42(4), 1310–1324 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cavalcanti M.M., Domingos Cavalcanti V.N., Lasiecka I.: Wellposedness and optimal decay rates for wave equation with nonlinear boundary damping-source interaction. J. Differ. Equ. 236, 407–459 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Christianson H.: Semiclassical non-concentration near hyperbolic orbits. J. Funct. Anal. 246(2), 145–195 (2007)

    MATH  MathSciNet  Google Scholar 

  9. Dafermos, C.M.: Asymptotic behavior of solutions of evolution equations. Nonlinear evolution equations (Proc. Sympos., Univ. Wisconsin, Madison, Wis., 1977), Publ. Math. Res. Center Univ. Wisconsin, vol. 40. Academic Press, New York, 103–123, 1978

  10. do Carmo M.P.: Riemannian Geometry. Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston (1992)

    Google Scholar 

  11. Fukuoka, R.: Mollifier smoothing of tensor fields on differentiable manifolds and applications to Riemannian Geometry. http://arxiv.org/abs/math.DG/0608230

  12. Hitrik, M.: Expansions and eigenfrequencies for damped wave equations. Journées équations aux Dérivées Partielles (Plestin-les-Grèves, 2001), Exp. No. VI, 10 pp., Univ. Nantes, Nantes, 2001

  13. Lasiecka I., Tataru D.: Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping. Differ. Integral Equ. 6, 507–533 (1993)

    MATH  MathSciNet  Google Scholar 

  14. Lasiecka I., Triggiani R., Yao P.F.: Inverse/observability estimates for second order hyperbolic equations with variable coefficients. J. Math. Anal. Appl. 235, 13–57 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lions, J.L.: Controlabilité exacte, perturbations et stabilisation de systèmes distribués, tome 1, Masson, 1988

  16. Lions, J.L., Magenes, E.: Problèmes Aux Limites Non Homogènes et Applications, Vol. 1. Dunod, Paris, 1968

  17. Liu K.: Localy distributed control and damping for conservative systems. SIAM J. Control Optim. 35(5), 1574–1590 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Martinez P.: A new method to obtain decay rate estimates for dissipative systems with localized damping. Rev. Mat. Complutense 12(1), 251–283 (1999)

    MATH  Google Scholar 

  19. Miller L.: Escape function conditions for the observation, control, and stabilization of the wave equation. SIAM J. Control Optim. 41(5), 1554–1566 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  20. Nakao M.: Decay of solutions of the wave equation with a local nonlinear dissipation. Math. Ann. 305, 403–417 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nakao M.: Decay of solutions of the wave equation with local degenerate dissipation. Isr. J. Math. 95, 25–42 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nakao, M.: Decay and global existence for nonlinear wave equations with localized dissipations in general exterior domains. In: New Trends in the Theory of Hyperbolic Equations. Oper. Theory Adv. Appl., 159. Birkhäuser, Basel, 213–299, 2005

  23. Nakao M.: Energy decay for the wave equation with boundary and localized dissipations in exterior domains. Math. Nachr. 278(7–8), 771–783 (2005)

    MATH  MathSciNet  Google Scholar 

  24. Rauch J., Taylor M.: Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ. Math. J. 24, 79–86 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rauch J., Taylor M.: Decay of solutions to n ondissipative hyperbolic systems on compact manifolds. Comm. Pure Appl. Math. 28(4), 501–523 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rauch J.: Qualitative behavior of dissipative wave equations on bounded domains. Arch. Rational Mech. Anal. 62(1), 77–85 (1976)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Spivak, M.: A Comprehensive Introduction to Differential Geometry, Vols. 1–5. Publish or Perish, California, 1999

  28. Taylor M.: Partial Differential Equations, 1, 2. Springer, Berlin (1991)

    Google Scholar 

  29. Toundykov D.: Optimal decay rates for solutions of nonlinear wave equation with localized nonlinear dissipation of unrestricted growth and critical exponents source terms under mixed boundary. Nonlinear Anal. T. M. A. 67(2), 512–544 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Triggiani, R., Yao, P.F.: Carleman estimates with no lower-order terms for general Riemannian wave equations. Global uniqueness and observability in one shot. Appl. Math. Optim. 46, 331–375 (2002). Special issue dedicated to J. L. Lions

    Google Scholar 

  31. Warner F.W.: Foundations of Differentiable Manifolds and Lie Groups. Scott, Foresman and Company, Glenview (1971)

    MATH  Google Scholar 

  32. Zuazua E.: Exponential decay for the semilinear wave equation with locally distributed damping. Comm. Partial Differ. Equ. 15(2), 205–235 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Cavalcanti.

Additional information

Communicated by C. Dafermos

Research of M. M. Cavalcanti partially supported by the CNPq Grant 300631/2003-0.

Research of V. N. Domingos Cavalcanti partially supported by the CNPq Grant 304895/2003-2.

Research of J. A. Soriano partially supported by the CNPq Grant 301352/2003-8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavalcanti, M.M., Domingos Cavalcanti, V.N., Fukuoka, R. et al. Asymptotic Stability of the Wave Equation on Compact Manifolds and Locally Distributed Damping: A Sharp Result. Arch Rational Mech Anal 197, 925–964 (2010). https://doi.org/10.1007/s00205-009-0284-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-009-0284-z

Keywords

Navigation