Skip to main content
Log in

On Singularity Formation of a Nonlinear Nonlocal System

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We investigate the singularity formation of a nonlinear nonlocal system. This nonlocal system is a simplified one-dimensional system of the 3D model that was recently proposed by Hou and Lei (Comm Pure Appl Math 62(4):501–564, 2009) for axisymmetric 3D incompressible Navier–Stokes equations with swirl. The main difference between the 3D model of Hou and Lei and the reformulated 3D Navier–Stokes equations is that the convection term is neglected in the 3D model. In the nonlocal system we consider in this paper, we replace the Riesz operator in the 3D model by the Hilbert transform. One of the main results of this paper is that we prove rigorously the finite time singularity formation of the nonlocal system for a large class of smooth initial data with finite energy. We also prove global regularity for a class of smooth initial data. Numerical results will be presented to demonstrate the asymptotically self-similar blow-up of the solution. The blowup rate of the self-similar singularity of the nonlocal system is similar to that of the 3D model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94(1), 61–66 (1984)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Comm. Pure Appl. Math. 35, 771–831 (1982)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Calderon, A.P., Zygmund, A.: On singular integrals. Am. J. Math. 78(2), 289–309 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chae, D., Cordoba, A., Cordoba, D., Fontelos, M.A.: Finite time singularities in a 1D model of the quasi-geostrophic equation. Adv. Math. 194, 203–223 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Constantin, P.: Note on loss of regularity for solutions of the 3D incompressible Euler and related equations. Commun. Math. Phys. 104, 311–326 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Constantin, P., Lax, P.D., Majda, A.J.: A simple one-dimensional model for the three-dimensional vorticity equation. Comm. Pure Appl. Math. 38(6), 715–724 (1985)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Cordoba, A., Cordoba, D., Fontelos, M.A.: Formation of singularities for a transport equation with nonlocal velocity. Adv. Math. 162(3), 1375–1387 (2005)

    MathSciNet  Google Scholar 

  8. De Gregorio, S.: On a one-dimensional model for the 3-dimensional vorticity equation. J. Stat. Phys. 59, 1251–1263 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. De Gregorio, S.: A partial differential equation arising in a 1D model for the 3D vorticity equation. Math. Method Appl. Sci. 19(15), 1233–1255 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Duoandikoetxea, J.: The Hilbert transform and Hermite functions: a real variable proof of the L 2-isometry. J. Math. Anal. Appl. 347, 592–596 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fefferman, C.: http://www.claymath.org/millennium/Navier-Stokesequations

  12. Hou, T.Y.: Blow-up or no blow-up? A unified computational and analytic approach to study 3-D incompressible Euler and Navier–Stokes equations. Acta Numer. 18, 277–346 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hou, T.Y., Li, R.: Dynamic depletion of vortex stretching and non-blowup of the 3-D incompressible Euler equations. J. Nonlinear Sci. 16(6), 639–664 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Hou, T.Y., Lei, Z.: On partial regularity of a 3D model of Navier–Stokes equations. Commun. Math Phys. 287(2), 589–612 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Hou, T.Y., Li, C.: Dynamic stability of the 3D axi-symmetric Navier–Stokes equations with swirl. Comm. Pure Appl. Math. 61(5), 661–697 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hou, T.Y., Lei, Z.: On the stabilizing effect of convection in 3D incompressible flows. Comm. Pure Appl. Math. 62(4), 501–564 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hou, T.Y., Shi, Z., Wang, S.: On singularity formation of a 3D model for incompressible Navier–Stokes equations. arXiv:0912.1316v1 [math.AP] (2009)

  18. Li, D., Rodrigo, J.: Blow up for the generalized surface quasi-geostrophic equation with supercritical dissipation. Commun. Math. Phys. 286(1), 111–124 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Li, D., Rodrigo, J.: On a one-dimensional nonlocal flux with fractional dissipation. Preprint (2009)

  20. Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics, vol. 27. Cambridge University Press, Cambridge, 2002

  21. Okamoto, H., Ohkitani, K.: On the role of the convection term in the equations of motion of incompressible fluid. J. Phys. Soc. Jpn. 74(10), 2737–2742 (2005)

    Article  MATH  ADS  Google Scholar 

  22. Shelley, M.: A study of singularity formation in vortex sheet motion by a spectrally accurate vortex method. J. Fluid Mech. 244, 493–526 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Temam, R.: Navier–Stokes Equations, 2nd edn. AMS Chelsea Publishing, Providence, RI, 2001

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Y. Hou.

Additional information

Communicated by V. Šverák

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, T.Y., Li, C., Shi, Z. et al. On Singularity Formation of a Nonlinear Nonlocal System. Arch Rational Mech Anal 199, 117–144 (2011). https://doi.org/10.1007/s00205-010-0319-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-010-0319-5

Keywords

Navigation