Skip to main content
Log in

Stability of Gasless Combustion Fronts in One-Dimensional Solids

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

For gasless combustion in a one-dimensional solid, we show a type of nonlinear stability of the physical combustion front: if a perturbation of the front is small in both a spatially uniform norm and an exponentially weighted norm, then the perturbation stays small in the spatially uniform norm and decays in the exponentially weighted norm, provided the linearized operator has no eigenvalues in the right half-plane other than zero. Using the Evans function, we show that the zero eigenvalue must be simple. Factors that complicate the analysis are: (1) the linearized operator is not sectorial, and (2) the linearized operator has good spectral properties only when the weighted norm is used, but then the nonlinear term is not Lipschitz. The result is nevertheless physically natural. To prove it, we first show that when the weighted norm is used, the semigroup generated by the linearized operator decays on a subspace complementary to the operator’s kernel, by showing that it is a compact perturbation of the semigroup generated by a more easily analyzed triangular operator. We then use this result to help establish that solutions stay small in the spatially uniform norm, which in turn helps establish nonlinear convergence in the weighted norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balasuriya S., Gottwald G., Hornibrook J., Lafortune S.: High Lewis number combustion wavefronts: a perturbative Melnikov analysis. SIAM J. Appl. Math. 67, 464–486 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Bates, P.W., Jones, C.K.R.T.: Invariant manifolds for semilinear partial differential equations. Dynamics reported 2, 1–38, Dynam. Report. Ser. Dynam. Systems Appl., Vol. 2. Wiley, Chichester, 1989

  • Bayliss A., Matkowsky B.: Two routes to chaos in condensed phase combustion. SIAM J. Appl. Math. 50, 437–459 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  • Beck M., Ghazaryan A., Sandstede B.: Nonlinear convective stability of traveling fronts near Turing and Hopf instabilities. J. Differ. Equ. 246, 4371–4390 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Benzoni-Gavage S., Serre D., Zumbrun K.: Alternate Evans functions and viscous shock waves. SIAM J. Math. Anal. 32, 929–962 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Berestycki, H., Larrouturou, B., Roquejoffre, J.-M.: Mathematical investigation of the cold boundary difficulty in flame propagation theory. Dynamical Issues in Combustion Theory, Vol. 35 (Minneapolis, MN, 1989) IMA Vol. Math. Appl., Springer, New York, 37–61, 1991

  • Beyn W.J., Lorenz J.: Nonlinear stability of rotating patterns. Dyn. Partial Differ. Equ. 5, 349–400 (2008)

    MATH  MathSciNet  Google Scholar 

  • Billingham J.: Phase plane analysis of one-dimensional reaction diffusion waves with degenerate reaction terms. Dyn. Stab. Syst. 15, 23–33 (2000)

    MATH  MathSciNet  Google Scholar 

  • Chicone, C., Latushkin, Y.: Evolution Semigroups in Dynamical Systems and Differential Equations. Math. Surv. Monogr. Vol. 70. AMS, Providence, 1999

  • da Mota J.C., Schecter S.: Combustion fronts in a porous medium with two layers. J. Dyn. Differ. Equ. 18, 615–665 (2006)

    Article  MATH  Google Scholar 

  • de Souza A.J., Akkutlu I.Y., Marchesin D.: Wave sequences for solid fuel adiabatic in-situ combustion in porous media. Comput. Appl. Math. 25, 27–54 (2006)

    MathSciNet  Google Scholar 

  • Doedel E., Friedman M.J.: Numerical computation of heteroclinic orbits. Continuation techniques and bifurcation problems. J. Comput. Appl. Math. 26, 155–170 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • Edmunds D.E., Evans W.D.: Spectral Theory and Differential Operators. Clarendon Press, Oxford (1989)

    MATH  Google Scholar 

  • Engel K., Nagel R.: One-parameter Semigroups for Linear Evolution Equations. Springer, New York (2000)

    MATH  Google Scholar 

  • Evans, J.W.: Nerve axon equations. III. Stability of the nerve impulse. Indiana Univ. Math. J. 22, 577–593(1972/73)

    Google Scholar 

  • Friesecke G., Pego R.L.: Solitary waves on FPU lattices: II. Linear implies nonlinear stability. Nonlinearity 15, 1343–1359 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Gallay T., Schneider G., Uecker H.: Stable transport of information near essentially unstable localized structures. Discret. Contin. Dyn. Syst. Ser. B 4, 349–390 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Ghazaryan G.: On the convective nature of the instability of a front undergoing a supercritical Turing bifurcation. Math. Comput. Simul. 80, 10–19 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Ghazaryan G.: Nonlinear stability of high Lewis number combustion fronts. Indiana Univ. Math. J. 58, 181–212 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Ghazaryan G., Sandstede B.: Nonlinear convective instability of Turing-unstable fronts near onset: a case study. SIAM J. Appl. Dyn. Syst. 6, 319–347 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, Vol. 840. Springer, Berlin-New York, 1981

  • Hoffman A., Wayne C.E.: Counter-propagating two-soliton solutions in the Fermi-Pasta-Ulam lattice. Nonlinearity 21, 2911–2947 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Kato T.: Perturbation Theory for Linear Operators. Springer, New York (1966)

    MATH  Google Scholar 

  • Logak E.: Mathematical analysis of a condensed phase combustion model without ignition temperature. Nonlinear Anal. Theory Methods Appl. 28, 1–38 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Luo Z.-H., Guo B.-Z., Morgul O.: Stability and Stabilization of Infinite Dimensional Systems with Applications. Springer, London (1999)

    MATH  Google Scholar 

  • Matkowsky B., Sivashinsky G.: Propagation of a pulsating reaction front in solid fuel combustion. SIAM J. Appl. Math. 35, 465–478 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  • Miller J.R., Weinstein M.I.: Asymptotic stability of solitary waves for the regularized long-wave equation. Commun. Pure Appl. Math. 49, 399–441 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Palmer K.: Exponential dichotomies and transversal homoclinic points. J. Differ. Equ. 55, 225–256 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  • Palmer K.: Exponential dichotomies and Fredholm operators. Proc. Am. Math. Soc. 104, 149–156 (1988)

    MATH  MathSciNet  Google Scholar 

  • Pazy P.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    MATH  Google Scholar 

  • Pego R.L., Weinstein M.I.: Asymptotic stability of solitary waves. Commun. Math. Phys. 164, 305–349 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Sandstede, B.: Stability of travelling waves. Handbook of Dynamical Systems, Vol. 2. North-Holland, Amsterdam, 983–1055, 2002

  • Sandstede, B., Scheel, A. Absolute and convective instabilities of waves on unbounded and large bounded domains. Physica D 145, 233–277

  • Sandstede B., Scheel A.: Relative Morse indices, Fredholm indices, and group velocities. Discret. Contin. Dyn. Syst. 20, 139–158 (2008)

    MATH  MathSciNet  Google Scholar 

  • Schecter S.: The saddle-node separatrix-loop bifurcation. SIAM J. Math. Anal. 18, 1142–1156 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  • Sell, G., You, Y.: Dynamics of evolutionary equations. Applied Mathematical Sciences, Vol. 143, Springer, New York, 2002

  • Varas F., Vega J.: Linear stability of a plane front in solid combustion at large heat of reaction. SIAM J. Appl. Math. 62, 1810–1822 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Webb G.F.: Theory of Nonlinear Age-dependent Population Dynamics. Decker, New York (1985)

    MATH  Google Scholar 

  • Wu Y., Xing X., Ye Q.: Stability of travelling waves with algebraic decay for n-degree Fisher-type equations. Discret. Contin. Dyn. Syst. 16, 47–66 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Yamashita M.: Melnikov vector in higher dimensions. Nonlinear Anal. 18, 657–670 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Schecter.

Additional information

Communicated by C.M. Dafermos

We thank Dan Marchesin for discussions that led to this work. The work was supported in part by the National Science Foundation under grants DMS-0406016, 0338743, 0354339, and 0410267, and by CNPq-Brazil under grant 200403/05-2. Y. Latushkin. gratefully acknowledges the support of the Research Board and the Research Council of the University of Missouri and of the EU Marie Curie “Transfer of Knowledge” program. A. J. de Souza gratefully acknowledges the hospitality of North Carolina State University, and A. Ghazaryan., Y. Latushkin., and S. Schecter. gratefully acknowledge the hospitality of the Mathematical Sciences Research Institute in Berkeley, California, during part of this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghazaryan, A., Latushkin, Y., Schecter, S. et al. Stability of Gasless Combustion Fronts in One-Dimensional Solids. Arch Rational Mech Anal 198, 981–1030 (2010). https://doi.org/10.1007/s00205-010-0358-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-010-0358-y

Keywords

Navigation