Skip to main content
Log in

Orientability and Energy Minimization in Liquid Crystal Models

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Uniaxial nematic liquid crystals are modelled in the Oseen–Frank theory through a unit vector field n. This theory has the apparent drawback that it does not respect the head-to-tail symmetry in which n should be equivalent to −n. This symmetry is preserved in the constrained Landau–de Gennes theory that works with the tensor \({Q=s \left(n\otimes n-\frac{1}{3} Id\right)}\). We study the differences and the overlaps between the two theories. These depend on the regularity class used as well as on the topology of the underlying domain. We show that for simply-connected domains and in the natural energy class W 1,2 the two theories coincide, but otherwise there can be differences between the two theories, which we identify. In the case of planar domains with holes and various boundary conditions, for the simplest form of the energy functional, we completely characterise the instances in which the predictions of the constrained Landau–de Gennes theory differ from those of the Oseen–Frank theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams R.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Ball, J.M., Zarnescu, A.: Partial regularity and smooth topology-preserving approximations of rough domains. In preparation

  3. Ball, J.M., Zarnescu, A.: Orientable and non-orientable director fields for liquid crystals. In: PAMM, 7, pp. 1050701–1050704 (2007). doi:10.1002/pamm.200700489

  4. Ball J.M., Zarnescu A.: Orientable and non-orientable line field models for uniaxial nematic liquid crystals. Mol. Cryst. Liq. Cryst. 495, 573–585 (2008)

    Article  Google Scholar 

  5. Bethuel F., Brezis H., Coleman B.D., Hélein F.: Bifurcation analysis of minimizing harmonic maps describing the equilibrium of nematic phases between cylinders. Arch. Rational Mech. Anal. 118(2), 149–168 (1992). doi:10.1007/BF00375093

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bethuel, F., Brezis, H., Hélein, F.: Ginzburg-Landau vortices. In: Progress in Nonlinear Differential Equations and their Applications, vol. 13. Birkhäuser, Boston, 1994

  7. Bing, R.H.: The geometric topology of 3-manifolds. In: American Mathematical Society Colloquium Publications, vol. 40. American Mathematical Society, Providence, 1983

  8. Brezis H., Mironescu P.: Composition in fractional Sobolev spaces. Discrete Contin. Dyn. Syst. 7, 241–246 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brezis H., Nirenberg L.: Degree theory and BMO. I. Compact manifolds without boundaries. Sel. Math. (N.S.) 1(2), 197–263 (1995). doi:10.1007/BF01671566

    Article  MathSciNet  MATH  Google Scholar 

  10. Brezis H., Nirenberg L.: Degree theory and BMO. II. Compact manifolds with boundaries. With an appendix by the authors and Petru Mironescu. Sel. Math. (N.S.) 2(3), 309–368 (1996). doi:10.1007/BF01587948

    Article  MATH  Google Scholar 

  11. do Carmo, M.A.: Riemannian geometry. In: Mathematics: Theory and Applications. Birkhäuser, Boston, 1992

  12. Cloutier, S.G., Eakin, J.N., Guico, R.S., Sousa, M.E., Crawford, G.P., Xu, J.M.: Molecular self-organization in cylindrical nanocavities. Phys. Rev. E 73, 051703 (2006)

    Article  ADS  Google Scholar 

  13. Conway, J.B.: Functions of one complex variable. II. In: Graduate Texts in Mathematics, vol. 159. Springer, New York, 1995

  14. Evans, L., Gariepy, R.F.: Measure theory and fine properties of functions. In: Studies in Advanced Mathematics. CRC Press, Boca Raton, 1992

  15. Frank F.: On the theory of liquid crystals. Disc. Faraday Soc. 25, 1 (1958)

    Article  Google Scholar 

  16. de Gennes, P.G., Prost, J. (1995). The Physics of Liquid Crystals, 2nd edn. Oxford University Press, 1995

  17. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. In: Classics in Mathematics. Springer, Berlin, 2001. Reprint of the 1998 edition

  18. Guillemin V., Pollack A.: Differential Topology. Prentice-Hall, Englewood Cliffs (1974)

    MATH  Google Scholar 

  19. Hang F., Lin F.: Topology of Sobolev mappings. II. Acta Math. 191(1), 55–107 (2003). doi:10.1007/BF02392696

    Article  MathSciNet  MATH  Google Scholar 

  20. Hang F., Lin F.: Topology of Sobolev mappings. IV. Discrete Contin. Dyn. Syst. 13(5) 1097–1124 (2005). doi:10.3934/dcds.2005.13.1097

    MathSciNet  MATH  Google Scholar 

  21. Hardt R., Lin F.H.: Partially constrained boundary conditions with energy minimizing mappings. Commun. Pure Appl. Math. 42(3), 309–334 (1989). doi:10.1002/cpa.3160420306

    Article  MathSciNet  MATH  Google Scholar 

  22. Hardt R., Lin F.H.: Harmonic maps into round cones and singularities of nematic liquid crystals. Math. Z. 213(4), 575–593 (1993). doi:10.1007/BF03025739

    Article  MathSciNet  MATH  Google Scholar 

  23. Hatcher, A.: Algebraic Topology. Cambridge University Press, 2002

  24. Hirsch, W.: Differential topology. In: Graduate Texts in Mathematics, vol. 33. Springer, New York, 1976

  25. Nguyen, L., Zarnescu, A.: Refined approximation of Landau de Gennes energy minimizers. ArXiv:1006.5689

  26. Lee, J.M.: Introduction to topological manifolds. In: Graduate Texts in Mathematics, vol. 202. Springer, New York, 2000

  27. Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, vol. I. Springer, New York, 1972. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181

  28. Longa L., Trebin H.R.: Structure of the elastic free energy for chiral nematic liquid crystals. Phys. Rev. A 39, 2160 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  29. Majumdar A., Zarnescu A.: Landau-De Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond. Arch. Rational Mech. Anal. 196(1), 227–280 (2010). doi:10.1007/s00205-009-0249-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Milnor, J.W. (1965). Topology from the Differentiable Viewpoint. The University Press of Virginia, Charlottesville, 1965

  31. Boutet de Monvel-Berthier, A., Georgescu, V., Purice, R.: A boundary value problem related to the Ginzburg-Landau model. Commun. Math. Phys. 142(1), 1–23 (1991). http://projecteuclid.org/getRecord?id=euclid.cmp/1104248488

  32. Mottram, N.J., Newton, C.: Introduction to Q-tensor theory. Technical report, University of Strathclyde, Department of Mathematics (2004)

  33. Pakzad M.R., Rivière T.: Weak density of smooth maps for the Dirichlet energy between manifolds. Geom. Funct. Anal. 13(1), 223–257 (2003). doi:10.1007/s000390300006

    Article  MathSciNet  MATH  Google Scholar 

  34. Schoen, R., Uhlenbeck, K.: Boundary regularity and the Dirichlet problem for harmonic maps. J. Differ. Geom. 18(2), 253–268 (1983). http://projecteuclid.org/getRecord?id=euclid.jdg/1214437663

    Article  MathSciNet  MATH  Google Scholar 

  35. Spivak, M.: A Comprehensive Introduction to Differential Geometry, 3rd edn. Brandeis University, Waltham, 1999

  36. Triebel H.: Interpolation Theory, Function Spaces, Differential Operators, 2nd edn. Johann Ambrosius Barth, Heidelberg (1995)

    MATH  Google Scholar 

  37. Vissenberg M., Stallinga S., Vertogen G.: Generalized Landau-de Gennes theory of uniaxial and biaxial nematic liquid crystals. Phys. Rev. E 55, 4367 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  38. Ziemer, W.P.: Weakly differentiable functions. Sobolev spaces and functions of bounded variation. In: Graduate Texts in Mathematics, vol. 120. Springer, New York, 1989

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arghir Zarnescu.

Additional information

Communicated by D. Kinderlehrer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ball, J.M., Zarnescu, A. Orientability and Energy Minimization in Liquid Crystal Models. Arch Rational Mech Anal 202, 493–535 (2011). https://doi.org/10.1007/s00205-011-0421-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-011-0421-3

Keywords

Navigation