Skip to main content
Log in

Well-Posedness in Smooth Function Spaces for the Moving-Boundary Three-Dimensional Compressible Euler Equations in Physical Vacuum

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove well-posedness for the three-dimensional compressible Euler equations with moving physical vacuum boundary, with an equation of state given by p(ρ) =  C γ ρ γ for γ > 1. The physical vacuum singularity requires the sound speed c to go to zero as the square-root of the distance to the moving boundary, and thus creates a degenerate and characteristic hyperbolic free-boundary system wherein the density vanishes on the free-boundary, the uniform Kreiss–Lopatinskii condition is violated, and manifest derivative loss ensues. Nevertheless, we are able to establish the existence of unique solutions to this system on a short time-interval, which are smooth (in Sobolev spaces) all the way to the moving boundary, and our estimates have no derivative loss with respect to initial data. Our proof is founded on an approximation of the Euler equations by a degenerate parabolic regularization obtained from a specific choice of a degenerate artificial viscosity term, chosen to preserve as much of the geometric structure of the Euler equations as possible. We first construct solutions to this degenerate parabolic regularization using a higher-order version of Hardy’s inequality; we then establish estimates for solutions to this degenerate parabolic system which are independent of the artificial viscosity parameter. Solutions to the compressible Euler equations are found in the limit as the artificial viscosity tends to zero. Our regular solutions can be viewed as degenerate viscosity solutions. Our methodology can be applied to many other systems of degenerate and characteristic hyperbolic systems of conservation laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrose D., Masmoudi N.: The zero surface tension limit of three-dimensional water waves. Indiana Univ. Math. J. 58, 479–521 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen G.-Q., Wang Y.-G.: Existence and stability of compressible current-vortex sheets in three-dimensional magnetohydrodynamics. Arch. Rational Mech. Anal. 187, 369–408 (2008)

    Article  ADS  MATH  Google Scholar 

  3. Cheng A., Coutand D., Shkoller S.: On the motion of vortex sheets with surface tension in the 3D Euler equations with vorticity. Commun. Pure Appl. Math. 61, 1715–1752 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Coulombel J.-F., Secchi P.: Nonlinear compressible vortex sheets in two space dimensions. Ann. Sci. Ecole Norm. Sup. 41, 85–139 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Coulombel J.-F., Secchi P.: Uniqueness of 2-D compressible vortex sheets. Commun. Pure Appl. Anal. 8, 1439–1450 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Courant, R., Friedrichs, K.O.: Supersonic flow and shock waves. Reprinting of the 1948 original. Applied Mathematical Sciences, Vol. 21. Springer, New York-Heidelberg, 1976

  7. Coutand D., Lindblad H., Shkoller S.: A priori estimates for the free-boundary 3-D compressible Euler equations in physical vacuum. Commun. Math. Phys. 296, 559–587 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Coutand D., Shkoller S.: On the interaction between quasilinear elastodynamics and the Navier-Stokes equations. Arch. Rational Mech. Anal. 179, 303–352 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Coutand D., Shkoller S.: Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20, 829–930 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coutand D., Shkoller S.: Well-posedness in smooth function spaces for the moving-boundary 1-D compressible Euler equations in physical vacuum. Commun. Pure Appl. Math. 64, 328–366 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Epstein C.L., Mazzeo R.: Wright-Fisher diffusion in one dimension. SIAM J. Math. Anal. 42, 568–608 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Francheteau J., Métivier G.: Existence de chocs faibles pour des systèmes quasi-linéaires hyperboliques multidimensionnels. Astérisque 268, 1–198 (2000)

    Google Scholar 

  13. Glimm, J., Majda, A.: Multidimensional hyperbolic problems and computations. The IMA Volumes in Mathematics and its Applications, Vol. 29. Springer, New York, 1991

  14. Gués O., Métivier G., Williams M., Zumbrun K.: Existence and stability of multidimensional shock fronts in the vanishing viscosity limit. Arch. Rational Mech. Anal. 175, 151–244 (2005)

    Article  ADS  MATH  Google Scholar 

  15. Jang J.: Local well-posedness of dynamics of viscous gaseous stars. Arch. Rational Mech. Anal. 195, 797–863 (2010)

    Article  ADS  MATH  Google Scholar 

  16. Jang J., Masmoudi N.: Well-posedness for compressible Euler with physical vacuum singularity. Commun. Pure Appl. Math. 62, 1327–1385 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kreiss H.O.: Initial boundary value problems for hyperbolic systems. Commun. Pure Appl. Math. 23, 277–296 (1970)

    Article  MathSciNet  Google Scholar 

  18. Kufner, A.: Weighted Sobolev Spaces. Wiley-Interscience, New York, 1985

  19. Lannes D.: Well-posedness of the water-waves equations. J. Am. Math. Soc. 18, 605–654 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lin L.W.: On the vacuum state for the equations of isentropic gas dynamics. J. Math. Anal. Appl. 121, 406–425 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lindblad H.: Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. 162, 109–194 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lindblad H.: Well posedness for the motion of a compressible liquid with free surface boundary. Commun. Math. Phys. 260, 319–392 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Liu T.-P.: Compressible flow with damping and vacuum. Jpn. J. Appl. Math. 13, 25–32 (1996)

    Article  MATH  Google Scholar 

  24. Liu T.-P., Yang T.: Compressible Euler equations with vacuum. J. Differ. Equ. 140, 223–237 (1997)

    Article  MATH  Google Scholar 

  25. Liu T.-P., Yang T.: Compressible flow with vacuum and physical singularity. Methods Appl. Anal. 7, 495–510 (2000)

    MathSciNet  MATH  Google Scholar 

  26. Liu T.-P., Smoller J.: On the vacuum state for isentropic gas dynamics equations. Adv. Math. 1, 345–359 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  27. Luo T., Xin Z., Yang T.: Interface behavior of compressible Navier-Stokes equations with vacuum. SIAM J. Math. Anal. 31, 1175–1191 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Majda A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Springer, New York (1984)

    Book  MATH  Google Scholar 

  29. Makino, T.: On a local existence theorem for the evolution equation of gaseous stars. Patterns and Waves. Stud. Math. Appl., Vol. 18. North-Holland, Amsterdam, 459–479, 1986

  30. Matusu-Necasova S., Okada M., Makino T.: Free boundary problem for the equation of spherically symmetric motion of viscous gas III. Jpn. J. Indust. Appl. Math. 14, 199–213 (1997)

    Article  MathSciNet  Google Scholar 

  31. Métivier, G.: Stability of multidimensional shocks. Advances in the Theory of Shock Waves. Progress in Nonlinear Differential Equations and Their Applications, Vol. 47. Birkhäuser, Boston, 25–103, 2001

  32. Nalimov V.I.: The Cauchy-Poisson problem. Dynamika Splosh. Sredy 18, 104–210 (1974, in Russian)

  33. Okada M., Makino T.: Free boundary problem for the equation of spherically symmetric motion of viscous gas. Jpn. J. Indust. Appl. Math. 10, 219–235 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shatah J., Zeng C.: Geometry and a priori estimates for free boundary problems of the Euler equation. Commun. Pure Appl. Math. 61, 698–744 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Taylor, M.: Partial Differential Equations, Vols. I–III. Springer, Berlin, 1996

  36. Temam, R.: Navier-Stokes equations. Theory and Numerical Analysis, 3rd edn. Studies in Mathematics and its Applications, Vol. 2. North-Holland, Amsterdam, 1984

  37. Trakhinin Y.: Existence of compressible current-vortex sheets: variable coefficients linear analysis. Arch. Rational Mech. Anal. 177, 331–366 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Trakhinin Y.: Local existence for the free boundary problem for the non-relativistic and relativistic compressible Euler equations with a vacuum boundary condition. Commun. Pure Appl. Math. 62, 1551–1594 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Trakhinin Y.: The existence of current-vortex sheets in ideal compressible magnetohydrodynamics. Arch. Rational Mech. Anal. 191, 245–310 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Video of Discussion: Free boundary problems related to water waves. Summer Program: Nonlinear Conservation Laws and Applications, July 13–31, 2009. Institute for Mathematics and its Applications. http://www.ima.umn.edu/videos/?id=915, 2009

  41. Wu S.: Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130, 39–72 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Wu S.: Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc. 12, 445–495 (1999)

    Article  MATH  Google Scholar 

  43. Xu C.-J., Yang T.: Local existence with physical vacuum boundary condition to Euler equations with damping. J. Differ. Equ. 210, 217–231 (2005)

    Article  MATH  Google Scholar 

  44. Yang T.: Singular behavior of vacuum states for compressible fluids. J. Comput. Appl. Math. 190, 211–231 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Yosihara H.: Gravity waves on the free surface of an incompressible perfect fluid. Publ. RIMS Kyoto Univ. 18, 49–96 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang P., Zhang Z.: On the free boundary problem of three-dimensional incompressible Euler equations. Commun. Pure Appl. Math. 61, 877–940 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Coutand.

Additional information

Communicated by V. Šverák

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coutand, D., Shkoller, S. Well-Posedness in Smooth Function Spaces for the Moving-Boundary Three-Dimensional Compressible Euler Equations in Physical Vacuum. Arch Rational Mech Anal 206, 515–616 (2012). https://doi.org/10.1007/s00205-012-0536-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0536-1

Keywords

Navigation