Skip to main content
Log in

Ricci Curvature of Finite Markov Chains via Convexity of the Entropy

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study a new notion of Ricci curvature that applies to Markov chains on discrete spaces. This notion relies on geodesic convexity of the entropy and is analogous to the one introduced by Lott, Sturm, and Villani for geodesic measure spaces. In order to apply to the discrete setting, the role of the Wasserstein metric is taken over by a different metric, having the property that continuous time Markov chains are gradient flows of the entropy. Using this notion of Ricci curvature we prove discrete analogues of fundamental results by Bakry–Émery and Otto–Villani. Further, we show that Ricci curvature bounds are preserved under tensorisation. As a special case we obtain the sharp Ricci curvature lower bound for the discrete hypercube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich, 2nd edn. Birkhäuser Verlag, Basel, 2008

  2. Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Preprint at arXiv:1106.2090, 2011

  3. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Preprint at arXiv:1109.0222, 2011

  4. Ané C., Ledoux M.: On logarithmic Sobolev inequalities for continuous time random walks on graphs. Probab. Theory Relat. Fields 116(4), 573–602 (2000)

    Article  MATH  Google Scholar 

  5. Bakry, D., Émery, M.: Diffusions hypercontractives. Séminaire de probabilités, XIX, 1983/84. Lecture Notes in Math., vol. 1123. Springer, Berlin, 177–206, 1985

  6. Bauer, F., Jost, J., Liu, S.: Ollivier-Ricci curvature and the spectrum of the normalized graph Laplace operator. Preprint at arXiv:1105.3803, 2011

  7. Benamou J.-D., Brenier Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bobkov S.G., Götze F.: Discrete isoperimetric and Poincaré-type inequalities. Probab. Theory Relat. Fields 114(2), 245–277 (1999)

    Article  MATH  Google Scholar 

  9. Bobkov S.G., Houdré C., Tetali P.: The subgaussian constant and concentration inequalities. Isr. J. Math. 156, 255–283 (2006)

    Article  MATH  Google Scholar 

  10. Bobkov S.G., Ledoux M.: On modified logarithmic Sobolev inequalities for Bernoulli and Poisson measures. J. Funct. Anal. 156(2), 347–365 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bobkov S.G., Tetali P.: Modified logarithmic Sobolev inequalities in discrete settings. J. Theoret. Probab. 19(2), 289–336 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bonciocat A.-I., Sturm K.-Th.: Mass transportation and rough curvature bounds for discrete spaces. J. Funct. Anal. 256(9), 2944–2966 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Buttazzo, G.: Semicontinuity, relaxation and integral representation in the calculus of variations. Pitman Research Notes in Mathematics Series. Longman Scientific and Technical, Harlow, 1989

  14. Caputo P., Dai Pra P., Posta G.: Convex entropy decay via the Bochner-Bakry-Emery approach. Ann. Inst. Henri Poincaré Probab. Stat. 45(3), 734–753 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Chow S.-N., Huang W., Li Y., Zhou H.: Fokker-Planck equations for a free energy functional or Markov process on a graph. Arch. Rational Mech. Anal. 203, 969–1008 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  16. Daneri S., Savaré G.: Eulerian calculus for the displacement convexity in the Wasserstein distance. SIAM J. Math. Anal. 40(3), 1104–1122 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dolbeault J., Nazaret B., Savaré G.: A new class of transport distances between measures. Calc. Var. Partial Differ. Equ. 34(2), 193–231 (2009)

    Article  MATH  Google Scholar 

  18. Erbar M.: The heat equation on manifolds as a gradient flow in the Wasserstein space. Ann. Inst. Henri Poincaré Probab. Stat. 46(1), 1–23 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Fang S., Shao J., Sturm K.-Th.: Wasserstein space over the Wiener space. Probab. Theory Relat. Fields 146(3–4), 535–565 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gigli, N., Kuwada, K.: Ohta. Heat flow on Alexandrov spaces. Preprint at arXiv:1008.1319, 2010

  21. Gozlan N., Léonard C.: Transport inequalities. A survey. Markov Process. Relat. Fields 16(4), 635–736 (2010)

    MATH  Google Scholar 

  22. Hua, B., Jost, J., Liu, S.: Geometric analysis aspects of infinite semiplanar graphs with nonnegative curvature. Preprint at arXiv:1107.2826, 2011

  23. Jordan R., Kinderlehrer D., Otto F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    MathSciNet  MATH  Google Scholar 

  24. Jost, J., Liu, S.: Ollivier’s Ricci curvature, local clustering and curvature dimension inequalities on graphs. Preprint at arXiv:1103.4037, 2011

  25. Ledoux, M.: The concentration of measure phenomenon. Mathematical Surveys and Monographs, vol. 89. American Mathematical Society, Providence, 2001

  26. Lin Y., Yau S.-T.: Ricci curvature and eigenvalue estimate on locally finite graphs. Math. Res. Lett. 17(2), 343–356 (2010)

    MathSciNet  ADS  MATH  Google Scholar 

  27. Lott J., Villani C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169(3), 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Maas J.: Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261(8), 2250–2292 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. McCann R.J.: A convexity principle for interacting gases. Adv. Math. 128(1), 153–179 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mielke, A.: Geodesic convexity of the relative entropy in reversible Markov chains. Preprint, 2011

  31. Mielke A.: A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems. Nonlinearity 24(4), 1329–1346 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Ohta S.-I., Sturm K.-Th.: Heat flow on Finsler manifolds. Commun. Pure Appl. Math. 62(10), 1386–1433 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ollivier Y.: Ricci curvature of metric spaces. C. R. Math. Acad. Sci. Paris 345(11), 643–646 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ollivier Y.: Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256(3), 810–864 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ollivier, Y., Villani, C.: A curved Brunn-Minkowski inequality on the discrete hypercube. Preprint at arXiv:1011.4779, 2010

  36. Otto F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26(1–2), 101–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Otto F., Villani C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173(2), 361–400 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Otto F., Westdickenberg M.: Eulerian calculus for the contraction in the Wasserstein distance. SIAM J. Math. Anal. 37(4), 1227–1255 (2005)

    Article  MathSciNet  Google Scholar 

  39. von Renesse M.-K., Sturm K.-Th.: Transport inequalities, gradient estimates, entropy, and Ricci curvature. Commun. Pure Appl. Math. 58(7), 923–940 (2005)

    Article  MATH  Google Scholar 

  40. Sammer M., Tetali P.: Concentration on the discrete torus using transportation. Combin. Probab. Comput. 18(5), 835–860 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sturm K.-Th.: On the geometry of metric measure spaces. I and II. Acta Math. 196(1), 65–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Villani, C.: Topics in optimal transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence, 2003

  43. Villani C.: Optimal transport, Old and new. Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer, Berlin, 2009

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Maas.

Additional information

Communicated by F. Otto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erbar, M., Maas, J. Ricci Curvature of Finite Markov Chains via Convexity of the Entropy. Arch Rational Mech Anal 206, 997–1038 (2012). https://doi.org/10.1007/s00205-012-0554-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0554-z

Keywords

Navigation