Skip to main content
Log in

Estimates on Eigenvalues of Laplacian

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract.

In this paper, we study eigenvalues of Laplacian on either a bounded connected domain in an n-dimensional unit sphere Sn(1), or a compact homogeneous Riemannian manifold, or an n-dimensional compact minimal submanifold in an N-dimensional unit sphere SN(1). We estimate the k+1-th eigenvalue by the first k eigenvalues. As a corollary, we obtain an estimate of difference between consecutive eigenvlaues. Our results are sharper than ones of P. C. Yang and Yau [25], Leung [19], Li [20] and Harrel II and Stubbe [12], respectively. From Weyl’s asymptotical formula, we know that our estimates are optimal in the sense of the order of k for eigenvalues of Laplacian on a bounded connected domain in an n-dimensional unit sphere Sn(1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashbaugh, M.S.: Isoperimetric and universal inequalities for eigenvalues. In: E.B. Davies, Yu Safalov (eds.), Spectral theory and geometry (Edinburgh, 1998), London Math. Soc. Lecture Notes, vol. 273, Cambridge Univ. Press, Cambridge, 1999, pp. 95–139

  2. Ashbaugh, M.S.: Universal eigenvalue bounds of Payne-Pólya-Weinberger, Hile-Prottter and H.C. Yang, Proc. Indian Acad. Sci. Math. Sci. 112, 3–30 (2002)

    Google Scholar 

  3. Ashbaugh, M.S., Benguria R.D.: Proof of the Payne-Pólya-Weinberger conjecture. Bull. Amer. Math. Soc. 25, 19–29 (1991)

    MATH  Google Scholar 

  4. Ashbaugh M.S., Benguria, R.D.: A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions. Ann. of Math. 135, 601–628 (1992)

    MATH  Google Scholar 

  5. Ashbaugh, M.S., Benguria R.D.: A second proof of the Payne-Pólya-Weinberger conjecture. Commun. Math. Phys. 147, 181–190 (1992)

    Google Scholar 

  6. Brands, J.J.A.M.: Bounds for the ratios of the first three membrane eigenvalues. Arch. Rational Mech. Anal. 16, 265–268 (1964)

    Article  MATH  Google Scholar 

  7. Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press, New York, 1984

  8. Cheng, Q.-M., Yang, H.C.: Inequalities of eigenvalues for a clamped plate problem. Preprint

  9. Cheng, Q.-M., Yang H.C.: Inequalities of eigenvalues on Laplacian on domains and compact hypersurfaces in complex projective spaces, Preprint

  10. Cheng, S.Y.: Eigenfunctions and eigenvalues of Laplacian. In: S.S. Chern, R. Osserman (eds.), Differntial Geometry, Proc. Symp. Pure Math. vol. 27 part 2, Amer. Math. Soc., Providence, Rhode Island, 1975, pp. 185–193

  11. Harrell II, E.M.: Some geometric bounds on eigenvalue gaps. Comm. Part. Diff. Eqs. 18, 179–198 (1993)

    Google Scholar 

  12. Harrell II, E.M., Michel, P.L.: Commutator bounds for eigenvalues with applications to spectral geometry. Comm. in Part. Diff. Eqs. 19, 2037–2055 (1994)

    Google Scholar 

  13. Harrell II, E.M., Stubbe, P.L.: On trace identities and universal eigenvalue estimates for some partial differential operators. Trans. Amer. Math. Soc. 349, 1797–1809 (1997)

    Article  Google Scholar 

  14. Hill, G.N., Protter, M.H.: Inequalities for eigenvalues of Laplacian. Indiana Univ. Math. 29, 523–538 (1980)

    Google Scholar 

  15. Hile, G.N., Yeh, R.Z.: Inequalities for eigenvalues of the biharmonic operator. Pac. J. Math. 112, 115–133 (1984)

    MATH  Google Scholar 

  16. Hook, S.M.: Domain independent upper bounds for eigenvalues of elliptic operator. Trans. Amer. Math. Soc. 318, (1990)

  17. Ivrii, V.Ya.: Second term of the spectrual asymptotic expansion of the Laplace-Beltrami operator on manifolds with boundary. Funct. Analy. Appl. 14(2), 98–105 (1980)

    Google Scholar 

  18. Lee, J.M.: The gaps in the spectrum of the Laplace-Beltrami operator. Houston J. Math. 17, 1–24 (1991)

    Google Scholar 

  19. Leung, P.-F.: On the consecutive eigenvalues of the Laplacain of a compact minimal submanifold in a sphere. J. Austral. Math. Soc. 50, 409–426 (1991)

    MATH  Google Scholar 

  20. Li, P.: Eigenvalue estimates on homogeneous manifolds. Comment. Math. Helvetici 55, 347–363 (1980)

    MATH  Google Scholar 

  21. Payne, L.E., Polya, G., Weinberger, H.F.: Sur le quotient de deux fréquences propres consécutives. Comptes Rendus Acad. Sci. Paris 241, 917–919 (1955)

    MATH  Google Scholar 

  22. Payne, L.E., Polya, G., Weinberger, H.F.: On the ratio of consecutive eigenvalues. J. Math. Phys. 35, 289–298 (1956)

    MATH  Google Scholar 

  23. Yang, H.C.: An estimate of the differance between consecutive eigenvalues. Preprint IC/91/60 of ICTP, Trieste, 1991

  24. Yang, H.C.: Estimates of the differance between consecutive eigenvalues. Preprint of ICTP, Trieste, 1995

  25. Yang, P.C., Yau, S.T.: Eigenvalues of the Laplacian of compact Riemannian surfaces and minimal submanifolds. Ann. Scuola Norm. Sup. Pisa CI. Sci. 7, 55–63 (1980)

    MATH  Google Scholar 

  26. Yau, S.T., Schoen, R.: Differential Geometry. Science Press, Beijing, 1988, pp. 142–145

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Ming Cheng.

Additional information

Mathematics Subject Classification (2000): 35P15, 58G25, 53C42

Research was partially supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science.

Research was partially Supported by SF of CAS, Chinese NSF and NSF of USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, QM., Yang, H. Estimates on Eigenvalues of Laplacian. Math. Ann. 331, 445–460 (2005). https://doi.org/10.1007/s00208-004-0589-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-004-0589-z

Keywords

Navigation