Skip to main content
Log in

Integrability of induction cocycles for Kac-Moody groups

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove that whenever a Kac-Moody group over a finite field is a lattice of its buildings, it has a fundamental domain with respect to which the induction cocycle is Lp for any p ∈ [1;+∞). The proof uses elementary counting arguments for root group actions on buildings. The applications are the possibility to apply some lattice superrigidity, and the normal subgroup property for Kac-Moody lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramenko, P.: Twin buildings and applications to S-arithmetic groups. Lecture Notes in Mathematics vol. 1641, Springer, 1997

  2. Abramenko, P., Remy, B.: Commensurators of some nonuniform tree lattices and Moufang twin trees. Institut Fourier preprint 627, (2003)

  3. Bonvin, P.: Strong boundaries and commensurator super-rigidity. appendix to [Rem03b], 2003

  4. Bourbaki, N.: Groupes et algèbres de Lie IV-VI. Éléments de Mathématique, Masson, 1981

  5. Bader, U., Shalom Y.: Factor and normal subgroup theorems for lattices in products of groups. preprint, 2003

  6. Carbone, L., Garland H.: Lattices in Kac-Moody groups. Math. Res. Letters 6, 439–448 (1999)

    Google Scholar 

  7. Dymara, J., Januszkiewicz, T.: Cohomology of buildings and their automorphism groups. Inventiones Mathematicæ 150, 579–627 (2002)

    Google Scholar 

  8. Kac, V., Peterson, D.: Defining relations for certain infinite-dimensional groups. Élie Cartan et les mathématiques d’aujourd’hui. The mathematical heritage of Élie Cartan. Lyon, 25-29 juin 1984. In: Société Mathématique de France, (ed.) Astérisque Hors-Série, pp. 165–208, 1985

  9. Lubotzky, A., Mozes, S., Raghunathan, M.S.: The word and Riemannian metrics on lattices of semisimple groups. Publications Mathématiques de l’IHÉS 91, 5–53 (2001)

    Google Scholar 

  10. Margulis, G.A.: Discrete Subgroups of Semisimple Lie Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 17, Springer, 1991

  11. Monod, N.: Superrigidity for irreducible lattices and geometric splitting. preprint, 2004

  12. Remy, B.: Construction de réseaux en théorie de Kac-Moody. Comptes-Rendus de l’Académie des Sciences de Paris 329, 475–478 (1999)

    Google Scholar 

  13. Remy, B.: Groupes de Kac-Moody déployés et presque déployés. Astérisque, vol. 277, Société Mathématique de France, 2002

  14. Remy, B.: Sur les propriétés algébriques et géométriques des groupes de Kac-Moody. Habilitation à diriger les recherches, Institut Fourier, Grenoble 1, 2003

  15. Remy, B.: Topological simplicity, commensurator super-rigidity and non-linearities of Kac-Moody groups. Geom. Funct. Anal. 14(4), 810–852 (2004)

    Google Scholar 

  16. Ronan, M.R.: Lectures on Buildings. Perspectives in Mathematics, vol. 7, Academic Press, 1989

  17. Remy, B., Ronan, M.: Topological groups of Kac-Moody type, right-angled twinnings and their lattices. Institut Fourier preprint 563, shortened version, 2003

  18. Shalom, Y.: Rigidity of commensurators and irreducible lattices. Inventiones Mathematicæ141, 1–54 (2000)

    Google Scholar 

  19. Shalom, Y.: Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group. Annals of Mathematics 152, 113–182 (2000)

    Google Scholar 

  20. Tits, J.: Uniqueness and presentation of Kac-Moody groups over fields. Journal of Algebra 105, 542–573 (1987)

    Google Scholar 

  21. Tits, J.: Twin buildings and groups of Kac-Moody type. Groups, Combinatorics & Geometry (LMS Symposium on Groups and Combinatorics, Durham, July 1990) In: M. Liebeck and J. Saxl, (eds.) London Mathematical Society Lecture Notes Series, vol. 165, Cambridge University Press, pp. 249–286, 1992

  22. Wilson, J.S.: Groups with every proper quotient finite. Proceedings of the Cambridge Philosophical Society 69 373–391 (1971)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertrand Rémy.

Additional information

Prépublication de l’Institut Fourier nº 637 (2004); e-mail: http://www-fourier.ujf-grenoble.fr/prepublicatons.html

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rémy, B. Integrability of induction cocycles for Kac-Moody groups. Math. Ann. 333, 29–43 (2005). https://doi.org/10.1007/s00208-005-0663-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-005-0663-1

Mathematics Subject Classification (2000)

Navigation