Skip to main content
Log in

Déformations des cônes de vecteurs primitifs

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Résumé

Pour un groupe réductif connexe complexe G, on classifie les modules simples dont le cône des vecteurs primitifs admet une déformation G-invariante non triviale. On relie cette classification à celle (due à Akhiezer) des variétés projectives lisses dont les orbites sous l’action d’un groupe algébrique affine connexe sont un diviseur et son complémentaire.

Notre principal outil est le schéma de Hilbert invariant d’Alexeev et Brion; on en détermine les premiers exemples.

On détermine aussi les déformations infinitésimales (non nécessairement G-invariantes) des cônes des vecteurs primitifs; elles sont triviales pour presque tous les modules simples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Akhiezer D. (1983). Equivariant completion of homogeneous algebraic varieties by homogeneous divisors. Ann. Glob. Anal. Geom. 1: 49–78

    Article  MATH  MathSciNet  Google Scholar 

  2. Akhiezer, D.: Lie group actions in complex analysis. Aspects Mathematics (1995)

  3. Alexeev V., Brion M. (2005). Moduli of affine schemes with reductive group action. J. Algebr. Geom. 14: 83–117

    MATH  MathSciNet  Google Scholar 

  4. Bourbaki, N.: Groupes et algèbres de Lie, Chap. 4–6, Masson (1981)

  5. Brion M. (1989). On spherical varieties of rank one. CMS conf. Proc. 10: 31–41

    MathSciNet  Google Scholar 

  6. Broer, B.: Normality of some nilpotent varieties and cohomology of line bundles on the cotangent bundle of the flag variety. Lie theory and geometry. In: Brylinski, J.-L. (eds.) et al. Honor of Bertram Kostant p. 1–19. Birkhauser, Boston, (1994)

  7. Danilov, V.I.: Cohomology of algebraic varieties. Encyclopaedia of Mathematical Sciences, vol 35, p. 1–125. Springer, Berlin (1996)

  8. Eisenbud, D.: Commutative Algebra With a View Toward Algebraic Geometry. GTM 150, Springer, Berlin (1995)

  9. Farault, J., Koranyi, A.: Analysis on symmetric cones. Oxford mathematical monographs. Oxford science publication (1994)

  10. Grosshans, F.: Algebraic Homogeneous Spaces and Invariant Theory. LNM 1673. Springer, Berlin (1997)

  11. Grothendieck, A.: Les schémas de Hilbert, Fondements de la Géométrie Algébrique, Séminaire Bourbaki, no. 221 (1961)

  12. Haiman M., Sturmfels B. (2004). Multigraded Hilbert Schemes. J. Algebr. Geom. 13: 725–769

    MATH  MathSciNet  Google Scholar 

  13. Hartshorne, R.: Algebraic geometry, GTM 52. Springer, Berlin (1977)

  14. Hirzebruch U. (1965). Uber Jordan-Algebren und kompakte Riemannsche symmetrische Räume vom Rang 1. Math. Z. 90: 339–354

    Article  MATH  MathSciNet  Google Scholar 

  15. Huckleberry A., Snow D. (1982). Almost-homogeneous Kähler manifolds with hypersurfaceorbits. Osaka J. Math. 19: 763–780

    MATH  MathSciNet  Google Scholar 

  16. Jacobson, N.: Structure and Representations of Jordan Algebras Vol 39. American Mathematical Society Colloquium Publications (1968)

  17. Jantzen, J. C.: Representation of algebraic groups, Vol 107, 2nd edn. Mathematical Surveys and Monographs (2003)

  18. Kleiman S. L., Landolfi J. (1971). Geometry and deformation of special Schubert varieties. Composi. Math. 23: 407–434

    MATH  MathSciNet  Google Scholar 

  19. Kraft, H.: Geometrische Methoden in der Invariantentheorie. Aspects of Mathematics (1985)

  20. Pinkham, H.C.: Deformations of algebraic varieties with \({\mathbb{G}}_ m \) -action. Astérisque 20, SMF (1974)

  21. Popov, V., Vinberg, E.: Invariant Theory. Encyclopaedia of Mathematical Sciences, vol. 55, p. 123–278. Springer, Berlin (1994)

  22. Ramanathan A. (1985). Schubert varieties are arithmetically Cohen–Macaulay. Invent. Math. 80(2): 283–294

    Article  MATH  MathSciNet  Google Scholar 

  23. Rim D.S. (1980). Equivariant G-structure on versal deformations. Trans. Am. Math. Soc. 257(1): 217–226

    Article  MATH  MathSciNet  Google Scholar 

  24. Schlessinger, M.: On rigid Singularities, vol. 59(1). Rice University Studies (1973)

  25. Sernesi, E.: Deformations of schemes, http://www.mat.uniroma3.it/users/sernesi/defsch.html, à paraître

  26. Serre, J.-P.: Algèbres de Lie Semi-simples Complexes. W. A. Benjamin, New York (1966)

  27. Svanes T. (1974). Coherent cohomology on Schubert subschemes of flag schemes and applications. Adv. Math. 14: 369–453

    Article  MATH  MathSciNet  Google Scholar 

  28. Svanes T. (1975). Some criteria of rigidity of noetherian rings. Math. Z. 144(2): 135–145

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Jansou.

Additional information

Ce travail a été partiellement soutenu par le réseau Liegrits MRTN-CT 2003-505078.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansou, S. Déformations des cônes de vecteurs primitifs. Math. Ann. 338, 627–667 (2007). https://doi.org/10.1007/s00208-007-0090-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0090-6

Mathematics Subject Classification (2000)

Navigation