Skip to main content
Log in

Braids, mapping class groups, and categorical delooping

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Dehn twists around simple closed curves in oriented surfaces satisfy the braid relations. This gives rise to a group theoretic map \(\phi : \beta_{2g} \to \Gamma _{g,1}\) from the braid group to the mapping class group. We prove here that this map is trivial in homology with any trivial coefficients in degrees less than g/2. In particular this proves an old conjecture of J. Harer. The main tool is categorical delooping in the spirit of (Tillmann in Invent Math 130:257–175, 1997). By extending the homomorphism to a functor of monoidal 2-categories, \(\phi\) is seen to induce a map of double loop spaces on the plus construction of the classifying spaces. Any such map is null-homotopic. In an appendix we show that geometrically defined homomorphisms from the braid group to the mapping class group behave similarly in stable homology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artin E. (1925). Theorie der Zöpfe. Hamburg Abh. 4: 47–72

    MATH  Google Scholar 

  2. Artin E. (1947). Theory of braids. Ann. Math. 48: 101–126

    Article  MathSciNet  Google Scholar 

  3. Birman, J.: Braids, links, and mapping class groups. Ann. Math. Stud. 82, PUP (1975)

  4. Birman J. and Wajnryb B. (1994). Presentations of the mapping class group. Errata. Israel J. Math. 88: 425–427

    Article  MATH  MathSciNet  Google Scholar 

  5. Bödigheimer C.-F. and Tillmann U. (2001). Stripping and splitting decorated mapping class groups. Birkäuser Prog. Math. 196: 47–57

    Google Scholar 

  6. Cohen, F.R.: Homology of mapping class groups for surfaces of low genus, The Lefshetz Centennial conference, Part II, Contemp. Math. 58 II, pp 21–30. Am. Math. Soc. (1987)

  7. Cohen F.R., Lada T.J. and May J.P. (1976). The homology of iterated loop spaces. Lec. Notes in Math. 533. Springer, Heidelberg

    Google Scholar 

  8. Cohen F.R. and Tillmann U. (1998). Toward homology operations for mapping class groups. Contemp. Math. 220: 35–46

    MathSciNet  Google Scholar 

  9. Fuks, D.B.: Cohomology of the braid group mod 2. Funct. Anal. i Prilozh. vol 4, 62–75 (1970) (Russian), English transl. in Functional Anal. Appl. 4, 143–151 (1970)

  10. Fuks, D.B.: Quillenization and bordisms. Funct. Anal. i Prilozh. 8 36–42 (1974) (Russian), English transl. in Functional Anal. Appl. 8, 31–36 (1974)

  11. Galatius S. (2004). Mop p homology of the stable mapping class group. Topology 43: 1105–1132

    Article  MATH  MathSciNet  Google Scholar 

  12. Harer J. (1985). Stability of the homology of mapping class groups. Ann. Math. 121: 215–249

    Article  MathSciNet  Google Scholar 

  13. Ivanov, N.V.: Stabilization of the homology of Teichmüller modular groups, Original: Algebra i Analiz 1, 110–126 (1989); Translated: Leningrad Math. J. 1, 675–691 (1990)

  14. Madsen, I., Tillmann, U.: The stable mapping class group and \(Q({\mathbb{C}} P^{+} _{\infty})\) . Invent. Math. 145, 509–544 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Madsen, I., Weiss, M.: The stable moduli space of Riemann surfaces: Mumford’s conjecture. Ann. Math. (to appear)

  16. McDuff D. and Segal G. (1976). Homology fribrations and the ‘Group-Completion’ Theorem. Inventiones 31: 279–284

    Article  MATH  MathSciNet  Google Scholar 

  17. Maginnis, J.S.: Brais and mapping class groups. PhD Thesis, Stanford University (1987)

  18. May J.P. (1974). E -spaces, group completions and permutative categories. Lond. Math. Soc. Lecture Notes Series 11: 61–93

    MathSciNet  Google Scholar 

  19. Miller E. (1986). The homology of the mapping class group. J. Diff. Geom. 24: 1–14

    MATH  Google Scholar 

  20. Moerdijk, I.: Bisimplicial sets and the group-completion theorem. Algebraic K-theory: connections with geometry and topology. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 279, pp 225–240. Kluwer, Dordrecht (1989)

  21. Powell J. (1978). Two theorems on the mapping class group of a surface. Proc. AMS 68(3): 347–350

    Article  MATH  MathSciNet  Google Scholar 

  22. Segal G. (1973). Configuration-spaces and iterated loop-spaces. Invent. Math. 21: 213–221

    Article  MATH  MathSciNet  Google Scholar 

  23. Segal G. (1974). Categories and cohomology theories. Topology 13: 293–312

    Article  MATH  MathSciNet  Google Scholar 

  24. Tillmann U. (1997). On the homotopy of the stable mapping class group. Invent. Math. 130: 257–175

    Article  MATH  MathSciNet  Google Scholar 

  25. Tillmann U. (1999). A splitting for the stable mapping class group. Math. Proc. Camb. Phil. Soc. 127: 55–65

    Article  MATH  MathSciNet  Google Scholar 

  26. Vershinin, V.: Braid groups and loop spaces. Uspekhi Mat. Nauk 54 3–84 (1999). English transl. in Russian Math. Surveys 54 273–350 (1999)

    Google Scholar 

  27. Wahl N. (2004). Infinite loop space structure(s) on the stable mapping class group. Topology 43: 343–368

    Article  MATH  MathSciNet  Google Scholar 

  28. Wajnryb B. (1983). A simple presentation for the mapping class group of an orientable surface. Israel J. Math. 45: 157–174

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Tillmann.

Additional information

The first author was supported by Inha University research grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Y., Tillmann, U. Braids, mapping class groups, and categorical delooping. Math. Ann. 339, 377–393 (2007). https://doi.org/10.1007/s00208-007-0117-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0117-z

Mathematics Subject Classification (2000)

Navigation