Skip to main content
Log in

A solution of a problem of Sophus Lie: normal forms of two-dimensional metrics admitting two projective vector fields

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We give a complete list of normal forms for the two-dimensional metrics that admit a transitive Lie pseudogroup of geodesic-preserving transformations and we show that these normal forms are mutually non-isometric. This solves a problem posed by Sophus Lie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aminova, A.V.: A Lie problem, projective groups of two-dimensional Riemann surfaces, and solitons. Izv. Vyssh. Uchebn. Zaved. Mat. 1990, 6:3–10, translation in Soviet Math. (Iz. VUZ) 34(6):1–9 (1990)

  2. Aminova A.V. (2003). Projective transformations of pseudo-Riemannian manifolds. Geometry 9. Math. Sci. (N. Y.) 113(3): 367–470

    Article  MATH  MathSciNet  Google Scholar 

  3. Beltrami E. (1865). Resoluzione del problema: riportari i punti di una superficie sopra un piano in modo che le linee geodetische vengano rappresentante da linee rette. Ann. Mat. 1(7): 185–204

    Google Scholar 

  4. Benenti S. (2005). Special symmetric two-tensors, equivalent dynamical systems, cofactor and bi-cofactor systems. Acta Appl. Math. 87(1–3): 33–91

    Article  MATH  MathSciNet  Google Scholar 

  5. Bryant, R.L., Manno, G., Matveev, V.S.: A solution of a problem of Sophus Lie: normal forms of 2-dim metrics admitting two projective vector fields. arXiv:0705.3592

  6. Cartan E. (1924). Sur les variétés à connexion projective. Bull. Soc. Math. Fr. 52: 205–241

    MathSciNet  MATH  Google Scholar 

  7. Darboux, G.: Leçons sur la théorie générale des surfaces, vol. III. Chelsea Publishing (1896); Bronx, N.Y., 1972

  8. Eastwood, M.: Notes on projective differential geometry, Symmetries and Overdetermined Systems of Partial Differential Equations (Minneapolis, MN, 2006), pp. 41–61, IMA Vol. Math. Appl., 144, Springer, New York (2007)

  9. Eastwood, M., Matveev, V.S.: Metric connections in projective differential geometry. Symmetries and Overdetermined Systems of Partial Differential Equations (Minneapolis, MN, 2006), pp. 339–351, IMA Vol. Math. Appl., 144, Springer, New York (2007)

  10. Ibragimov N. (1991). Essay on the Group Analysis of Ordinary Differential Equations. Znanie, Moscow

    Google Scholar 

  11. Kalnins, E.G., Kress, J.M., Miller, W. Jr.: Second order superintegrable systems in conformally flat spaces. II. The classical two-dimensional Stäckel transform. J. Math. Phys. 46(5) (2005)

  12. Knebelman M.S. (1930). On groups of motion in related spaces. Am. J. Math. 52: 280–282

    Article  MathSciNet  MATH  Google Scholar 

  13. Koenigs, G.: Sur les géodesiques a intégrales quadratiques. Note II from Darboux’ ‘Leçons sur la théorie générale des surfaces’, vol. IV. Chelsea Publishing (1896); Bronx, N.Y., 1972

  14. Kowalski O., Vlasek Z. (2007). Classification of locally projectively homogeneous torsion-less affine connections in the plane domains. Beiträge zur Algebra und Geometrie 48(1): 11–26

    MATH  MathSciNet  Google Scholar 

  15. Lagrange, J.-L.: Sur la construction des cartes géographiques. Novéaux Mémoires de l’Académie des Sciences et Bell-Lettres de Berlin (1779)

  16. Lie, S.: Untersuchungen über geodätische Kurven. Math. Ann. 20 (1882); Sophus Lie Gesammelte Abhandlungen, Band 2, erster Teil, pp. 267–374. Teubner, Leipzig (1935)

  17. Lie, S.: Classification und Integration von gewöhnlichen Differentialgleichungen zwischen x, y, de eine Gruppe von Transformationen gestatten, III. Norwegian Archives (1883); also appeared in Mathematische Annalen 32, 213–281 (1888)

  18. Lie S. (1912). Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformation. Teubner, Leipzig

    Google Scholar 

  19. Liouville R. (1889). Sur les invariants de certaines équations différentielles et sur leurs applications. Journal de l’École Polytechnique 59: 7–76

    Google Scholar 

  20. Matveev V.S., Topalov P.J. (1998). Trajectory equivalence and corresponding integrals. Regul. Chaotic Dyn. 3(2): 30–45

    Article  MATH  MathSciNet  Google Scholar 

  21. Matveev V.S., Topalov P.J. (1999). Geodesic equivalence of metrics on surfaces and their integrability. Dokl. Math. 60(1): 112–114

    Google Scholar 

  22. Matveev V.S., Topalov P.J. (2000). Metric with ergodic geodesic flow is completely determined by unparameterized geodesics. ERA AMS 6: 98–104

    MATH  MathSciNet  Google Scholar 

  23. Matveev V.S. (2004). Die Vermutung von Obata für Dimension 2. Arch. Math. 82: 273–281

    Article  MATH  Google Scholar 

  24. Matveev V.S. (2004). Solodovnikov’s theorem in dimension two. Dokl. Math. 69(3): 338–341

    MATH  Google Scholar 

  25. Matveev V.S. (2005). Lichnerowicz-Obata conjecture in dimension two. Commun. Math. Helv. 81(3): 541–570

    Article  Google Scholar 

  26. Matveev V.S. (2007). Proof of projective Lichnerowicz-Obata conjecture. J. Differ. Geom. 75: 459–502

    MATH  Google Scholar 

  27. Matveev V.S. (2006). Geometric explanation of Beltrami theorem. Int. J. Geom. Methods Mod. Phys. 3(3): 623–629

    Article  MATH  MathSciNet  Google Scholar 

  28. Romanovskiǐ, Yu.R.: Calculation of local symmetries of second-order ordinary differential equations by Cartan’s equivalence method. Mat. Zametki 60(1), 75–91, 159 (1996); English translation in Math. Notes 60(1–2), 56–67 (1996)

  29. Schouten J.A. (1926). Erlanger Programm und Übertragungslehre. Neue Gesichtspunkte zur Grundlegung der Geometrie. Rendiconti Palermo 50: 142–169

    Google Scholar 

  30. Solodovnikov, A.S.: Projective transformations of Riemannian spaces. Uspehi Mat. Nauk (N.S.) 11, 4(70), 45–116 (1956)

  31. Solodovnikov A.S. (1961). Spaces with common geodesics. Trudy Sem. Vektor. Tenzor. Anal. 11: 43–102

    MathSciNet  Google Scholar 

  32. Solodovnikov A.S. (1963). Geometric description of all possible representations of a Riemannian metric in Levi-Civita form. Trudy Sem. Vektor. Tenzor. Anal. 12: 131–173

    MathSciNet  Google Scholar 

  33. Solodovnikov A.S. (1969). The group of projective transformations in a complete analytic Riemannian space. Dokl. Akad. Nauk SSSR 186: 1262–1265

    MathSciNet  Google Scholar 

  34. Topalov P.J., Matveev V.S. (2003). Geodesic equivalence via integrability. Geometriae Dedicata 96: 91–115

    Article  MATH  MathSciNet  Google Scholar 

  35. Topalov P.J. (2002). Comutative conservation laws for geodesic flows of metrics admitting projective symmetry. Math. Res. Lett. 9: 65–72

    MATH  MathSciNet  Google Scholar 

  36. Tresse A. (1894). Sur les invariants différentiels des groupes continus de transformations. Acta Math. 18: 1–88

    Article  MathSciNet  Google Scholar 

  37. Tresse, A.: Détermination des invariants ponctuels de léquation différentielle ordinaire du second ordre \(y'' = \omega (x,y,y').\) Leipzig. 87 S. gr. 8° (1896)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir S. Matveev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryant, R.L., Manno, G. & Matveev, V.S. A solution of a problem of Sophus Lie: normal forms of two-dimensional metrics admitting two projective vector fields. Math. Ann. 340, 437–463 (2008). https://doi.org/10.1007/s00208-007-0158-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0158-3

Keywords

Navigation