Skip to main content
Log in

On manifolds satisfying stable systolic inequalities

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We show that for closed orientable manifolds the k-dimensional stable systole admits a metric-independent volume bound if and only if there are cohomology classes of degree k that generate cohomology in top-degree. Moreover, it turns out that in the nonorientable case such a bound does not exist for stable systoles of dimension at least two. Additionally, we prove that the stable systolic constant depends only on the image of the fundamental class in a suitable Eilenberg–Mac Lane space. Consequently, the stable k-systolic constant is completely determined by the multilinear intersection form on k-dimensional cohomology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Babenko, I.K.: Asymptotic invariants of smooth manifolds, Izv. Ross. Akad. Nauk Ser. Mat. 56(4), 707–751 (1992) (Russian) [Engl. Transl. Russian Acad. Sci. Izv. Math. 41(1), 1–38 (1993)]

  2. Babenko I.K.: Forte souplesse intersystolique de variétés fermées et de polyèdres. Ann. Inst. Fourier (Grenoble) 52(4), 1259–1284 (2002)

    MATH  MathSciNet  Google Scholar 

  3. Babenko I.K.: Topologie des systoles unidimensionnelles. Enseign. Math. (2) 52(1-2), 109–142 (2006)

    MATH  MathSciNet  Google Scholar 

  4. Babenko I.K., Katz M.G.: Systolic freedom of orientable manifolds. Ann. Sci. École Norm. Sup. (4(31(6), 787–809 (1998) See arXiv:dg-ga/9707002

    MathSciNet  Google Scholar 

  5. Babenko I.K., Katz M.G., Suciu A.I.: Volumes, middle-dimensional systoles, and Whitehead products. Math. Res. Lett. 5(4), 461–471 (1998) See arXiv:dg-ga/9707016

    MATH  MathSciNet  Google Scholar 

  6. Bangert, V., Katz, M.G.: Stable systolic inequalities and cohomology products. Comm. Pure Appl. Math. 56(7), 979–997. Dedicated to the memory of Jürgen K. Moser, see arXiv:math/0204181 [math.DG] (2003)

  7. Bangert, V., Katz, M.G.: Steven Shnider, and Shmuel Weinberger, E 7, Wirtinger inequalities, Cayley 4-form, and homotopy. Duke Math. J. (2006, to appear). arXiv:math/0608006 [math.DG]

  8. Berger M.: Du côté de chez Pu. Ann. Sci. École Norm. Sup. 5(4), 1–44 (1972)

    MATH  Google Scholar 

  9. Berger M.: A Panoramic View of Riemannian geometry. Springer (2003)

  10. Brunnbauer, M.: Homological invariance for asymptotic invariants and systolic inequalities. Geom. Funct. Anal. (2007, to appear). arXiv:math/0702789 [math.GT]

  11. Croke, C.B., Katz M.G.: Universal volume bounds in Riemannian manifolds, Surveys in differential geometry 2002, vol. VIII, pp. 109–137. Int. Press, Boston, (2003). See arXiv:math/0302248 [math.DG]

  12. Federer H.: Real flat chains, cochains and variational problems. Indiana Univ. Math. J. 24(4), 351–407 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gromov M.L.: Filling Riemannian manifolds. J. Diff. Geom. 18(1), 1–147 (1983)

    MATH  MathSciNet  Google Scholar 

  14. Gromov M.L.: Metric Structures for Riemannian and Non-Riemannian Spaces, progress in mathematics, vol. 152. Birkhäuser (1999)

  15. Hamilton M.J.D.: On the conformal systoles of four-manifolds. Manuscr. Math. 121(4), 417–424 (2006) See arXiv:math/0512127 [math.DG]

    Article  MATH  MathSciNet  Google Scholar 

  16. Hatcher, A.: Algebraic topology, Cambridge University Press, freely available at http://www.math.cornell.edu/~hatcher/AT/ATpage.html (2002)

  17. Katz, M.G.: Systolic Geometry and Topology, Mathematical Surveys and Monographs, vol. 137 (with an appendix by Solomon J.P.). American Mathematical Society (2007)

  18. Katz, M.G., Suciu, A.I.: Volume of Riemannian Manifolds, Geometric Inequalities, and Homotopy Theory, Tel Aviv Topology Conference: Rothenberg Festschrift (1998) Contemp. Math., vol. 231, pp. 113–136. Am. Math. Soc. (1999). See arXiv:math/9810172 [math.DG]

  19. Katz, M.G., Suciu, A.I.: Systolic freedom of loop space. Geom. Funct. Anal. 11(1), 60–73 (2001). (An updated version of the published paper may be found at arXiv:math/0106153 [math.DG])

    Google Scholar 

  20. Sabourau S.: Systolic volume and minimal entropy of aspherical manifolds. J. Diff. Geom. 74(1), 155–176 (2006) See arXiv:math/0603695 [math.DG]

    MATH  MathSciNet  Google Scholar 

  21. Serre J.-P.: Homologie singulière des espaces fibrés. III. Applications homotopiques. C. R. Acad. Sci. Paris 232, 142–144 (1951)

    MATH  MathSciNet  Google Scholar 

  22. Sullivan D.: Genetics of homotopy theory and the Adams conjecture. Ann. Math. 100(2), 1–79 (1974)

    Article  MathSciNet  Google Scholar 

  23. Whitehead G.W.: Elements of Homotopy Theory. Graduate Texts in Mathematics, vol. 61. Springer, Heidelberg (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Brunnbauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunnbauer, M. On manifolds satisfying stable systolic inequalities. Math. Ann. 342, 951–968 (2008). https://doi.org/10.1007/s00208-008-0263-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-008-0263-y

Mathematics Subject Classification (2000)

Navigation