Skip to main content
Log in

The essential spectrum of the Laplacian on rapidly branching tessellations

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper, we characterize absence of the essential spectrum of the Laplacian under a hyperbolicity assumption for general graphs. Moreover, we present a characterization for absence of the essential spectrum for planar tessellations in terms of curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allard C., Froese R.: A Mourre estimate for a Schrödinger operator on a binary tree. Rev. Math. Phys. 12(12), 1655–1667 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aizenman M., Sims R., Warzel S.: Stability of the absolutely continuous spectrum of random Schrödinger operators on tree graphs. Prob. Theory Relat. Fields 136, 363–394 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Antunovic’, T., Veselic’, I.: Spectral asymptotics of percolation Hamiltonians on amenable Cayley graphs. In: Proceedings of Operator Theory, Analysis and Mathematical Physics, Lund, pp. 1–29 (2006)

  4. Breuer J.: Singular continuous spectrum for the Laplacian on certain sparse trees. Commun. Math. Phys. 269(3), 851–857 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bollobás, B.: Graph Theory: An Introductory Course. Springer-Verlag (1979)

  6. Baues, O., Peyerimhoff, N.: Curvature and geometry of tessellating plane graphs. Discrete Comput. Geom. 25 (2001)

  7. Baues O., Peyerimhoff N.: Geodesics in non-positively curved plane tessellations. Adv. Geom. 6(2), 243–263 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators, Springer Verlag (1987)

  9. Chung, F.: Spectral graph theory. CBMS Regional Conference Series in Mathematics, No. 92, American Mathematical Society, New York (1997)

    Google Scholar 

  10. Cheeger, J.: A lower bound for the lowest eigenvalue of the Laplacian. In: Problems in Analysis. A Symposium in honor of S. Bochner, pp. 195–199. Princeton University Press, Princeton (1970)

  11. Dodziuk J.: Difference equations, isoperimetric inequalities and transience of certain random walks. Trans. Am. Math. Soc. 284, 787–794 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dodziuk, J.: Elliptic operators on infinite graphs. In: Proceedings of the Conference ’Krzysztof Wojciechowski 50 years—Analysis and Geometry of Boundary Value Problems’, Roskilde, Denmark (to appear). http://xxx.lanl.gov/abs/math.SP/0509193

  13. Dodziuk, J., Karp, L.: Spectral and function theory for combinatorial Laplacians. In: Durrett, R., Pinsky, M.A. (eds.) Geometry of Random Motion, vol. 73, pp. 25–40. AMS Contemporary Mathematics, New York (1988)

    Google Scholar 

  14. Dodziuk, J., Kendall, W.S.: Combinatorial Laplacians and isoperimetric inequality. In: Elworthy, K.D. (ed.) From Local Times to Global Geometry, Control and Physics. Longman Scientific and Technical, pp. 68-75 (1986)

  15. Donnelly H., Li P.: Pure point spectrum and negative curvature for noncompact manifolds. Duke Math J. 46, 497–503 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fujiwara K.: Laplacians on rapidly branching trees. Duke Math. J. 83(1), 191–202 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Froese R., Hasler D., Spitzer W.: Transfer matrices, hyperbolic geometry and absolutely continuous spectrum for some discrete Schrödinger operators on graphs. J. Funct. Anal. 230, 184–221 (2006)

    MATH  MathSciNet  Google Scholar 

  18. Georgescu V., Golénia S.: Isometries, fock spaces and spectral analysis of Schrödinger operators on trees. J. Funct. Anal. 227, 389–429 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ghys, E., de la Harpe, P. (ed.): Sur les groupes hyperboliques d’après Mikhael Gromov. Progress in Mathematics 83, Birkhäuser, Basel (1990)

    Google Scholar 

  20. Golénia S.: C*-algebra of anisotropic Schrödinger operators on trees. Annales Henri Poincaré 5(6), 1097–1115 (2004)

    Article  MATH  Google Scholar 

  21. Gromov M.: Hyperbolic groups. In: Gersten, S.M.(eds) Essays in group theory, M.S.R.I. Publ 8, pp. 75–263. Springer, Heidelberg (1987)

    Google Scholar 

  22. Higuchi, Y.: Combinatorial curvature for planar graphs. J. Graph Theory (2001)

  23. Klein A.: Absolutely continuous spectrum in the Anderson model on the Bethe lattice. Math. Res. Lett. 1, 399–407 (1994)

    MATH  MathSciNet  Google Scholar 

  24. Klassert, S., Lenz, D., Peyerimhoff, N., Stollmann, P.: Elliptic operators on planar graphs: unique continuation for eigenfunctions and nonpositive curvature. Proc. AMS 134, No. 5 (2005)

  25. Keller, M., Peyerimhoff, N.: Cheeger constants, growth and spectrum of locally tessellating planar graphs. arXiv:0903.4793

  26. Lyndon, R.S., Schupp, P.E.: Combinatorial group theory, Springer (1977)

  27. Woess, W.: Random Walks on Infinite Graphs and Groups. Cambridge Tracts in Mathematics 138. Cambridge University Press (2000)

  28. Woess W.: A note on tilings and strong isoperimetric inequality. Math. Proc. Camb. Philos. Soc. 124, 385–393 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wojciechowski, R.: Heat kernel and essential spectrum of infinite graphs. Indiana Univ. Math. J. (to appear)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Keller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, M. The essential spectrum of the Laplacian on rapidly branching tessellations. Math. Ann. 346, 51–66 (2010). https://doi.org/10.1007/s00208-009-0384-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-009-0384-y

Keywords

Navigation