Skip to main content
Log in

Two point extremal Gromov–Witten invariants of Hilbert schemes of points on surfaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Given an algebraic surface X, the Hilbert scheme X [n] of n-points on X admits a contraction morphism to the n-fold symmetric product X (n) with the extremal ray generated by a class β n of a rational curve. We determine the two point extremal GW-invariants of X [n] with respect to the class d β n for a simply-connected projective surface X and the extremal quantum first Chern class operator of the tautological bundle on X [n]. The methods used are vertex algebraic description of H*(X [n]), the localization technique applied to \({X=\mathbb P^2}\) and the results on quantum cohomology of X [n] when \({X=\mathbb C^2}\) in Okounkov and Pandharipande (Invent. Math. 179(3):523–557, 2010), and a generalization of the reduction theorem of Kiem-J. Li to the case of meromorphic 2-forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramovich D., Graber T., Vistoli A.: Algebraic orbifold quantum products. Contemp. Math. 310, 1–25 (2002)

    MathSciNet  Google Scholar 

  2. Behrend K.: Gromov-Witten invariants in algebraic geometry. Invent. Math. 127(3), 601–617 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Behrend K., Fantechi B.: The intrinsic normal cone. Invent. Math. 128, 45–88 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bryan, J., Graber, T.: The crepant resolution conjecture. In: Algebraic Geometry—Seattle 2005. Proc. Sympos. Pure Math., 80, Part 1, pp. 23–42. Amer. Math. Soc., Providence (2009)

  5. Chen W., Ruan Y.: A new cohomology theory of orbifold. Comm. Math. Phys. 248(1), 1–31 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Costello, K., Grojnowski, I.: Hilbert schemes, Hecke algebras and the Calogero-Sutherland system. math.AG/03101089

  7. Edidin D., Li W.P., Qin Z.B.: Gromov-Witten invariants of the Hilbert scheme of 3-points on \({\mathbb P^2}\) . Asian J. Math. 7(4), 551–574 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Fantechi B., Göttsche L.: Orbifold cohomology for global quotients. Duke Math. J. 117(2), 197–227 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Graber T., Pandharipande R.: Localization of virtual classes. Invent. Math. 135, 487–518 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grojnowski I.: Instantons and affine algebras. Part I: The Hilbert scheme and vertex operators. Math. Res. Lett. 3(2), 275–291 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Kiem, Y.-H., Li, J.: Gromov-Witten invariants of varieties with holomorphic 2-forms. math.AG/ 0707.2986

  12. Lee J.-H., Parker T.: A structure theorem for the Gromov-Witten invariants of Khler surfaces. J. Differ. Geom. 77(3), 483–513 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Lehn M.: Chern classes of tautological sheaves on Hilbert schemes of points on surfaces. Invent. Math. 136, 157–207 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lehn M., Sorger C.: The cup product of Hilbert schemes for K3 surfaces. Invent. Math. 152(2), 305–329 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li J., Tian G.: Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties. J. Am. Math. Soc. 11, 119–174 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li W.-P., Qin Z.B., Wang W.Q.: Vertex algebras and the cohomology ring structure of Hilbert schemes of points on surfaces. Math. Ann. 324(1), 105–133 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li W.-P., Qin Z.B.: On 1-point Gromov-Witten invariants of the Hilbert schemes of points on surfaces. Turkish J. Math. 26(1), 53–68 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Li W.-P., Qin Z.B., Zhang Q.: Curves in the Hilbert schemes of points on surfaces. Contemp. Math. 322, 89–96 (2003)

    MathSciNet  Google Scholar 

  19. Maulik D., Oblomkov A.: Quantum cohomology of the Hilbert scheme of points on A n -resolutions. J. Amer. Math. Soc. 22(4), 1055–1091 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nakajima H.: Heisenberg algebra and Hilbert schemes of points on projective surfaces. Ann. Math. 145(2), 379–388 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nakajima, H.: Lectures on Hilbert schemes of points on surfaces. In: Univ. Lect. Ser., vol. 18. Amer. Math. Soc. (1999)

  22. Okounkov A., Pandharipande R.: Quantum cohomology of the Hilbert schemes of points in the plane. Invent. Math. 179(3), 523–557 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Qin Z.B., Wang W.W.: Hilbert schemes and symmetric products: a dictionary. Contemp. Math. 310, 233–257 (2002)

    MathSciNet  Google Scholar 

  24. Ruan Y.: The cohomology ring of crepant resolutions of orbifolds. Contemp. Math. 403, 117–126 (2006)

    Google Scholar 

  25. Uribe B.: Orbifold cohomology of the symmetric product. Comm. Anal. Geom. 13(1), 113–128 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Vasserot E.: Sur l’anneau de cohomologie du schéma de Hilbert de \({\mathbb C^2}\) . C. R. Acad. Sci. Paris Sér. I Math. 332(1), 7–12 (2001)

    MathSciNet  MATH  Google Scholar 

  27. Voisin C.: On the punctual Hilbert scheme of a symplectic fourfold. Contemp. Math. 312, 265–289 (2002)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Additional information

J. Li was partially supported by an NSF grant DMS-0601002 and W.-P. Li was partially supported by the grant CERG601905 and GRF601808.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Li, WP. Two point extremal Gromov–Witten invariants of Hilbert schemes of points on surfaces. Math. Ann. 349, 839–869 (2011). https://doi.org/10.1007/s00208-010-0542-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-010-0542-2

Mathematics Subject Classification (2000)

Navigation