Skip to main content

Advertisement

Log in

An asymmetric affine Pólya–Szegö principle

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

An affine rearrangement inequality is established which strengthens and implies the recently obtained affine Pólya–Szegö symmetrization principle for functions on \({\mathbb R^n}\) . Several applications of this new inequality are derived. In particular, a sharp affine logarithmic Sobolev inequality is established which is stronger than its classical Euclidean counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A.: General logarithmic Sobolev inequalities and Orlicz embedding. J. Funct. Anal. 34, 292–303 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aubin T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11, 573–598 (1976)

    MathSciNet  MATH  Google Scholar 

  3. Bakry D., Coulhon T., Ledoux M., Saloff–Coste L.: Sobolev inequalities in disguise. Indiana Univ. Math. J. 44, 1033–1074 (1995)

    Article  MathSciNet  Google Scholar 

  4. Beckner W.: Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality. Ann. Math. 138, 213–242 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beckner, W.: Geometric proof of Nash’s inequality. Int. Math. Res. Not. 67–71 (1998)

  6. Beckner W.: Geometric asymptotics and the logarithmic Sobolev inequality. Forum Math. 11, 105–137 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bendikov A.D., Maheux P.: Nash type inequalities for fractional powers of non-negative self-adjoint operators. Trans. Am. Math. Soc. 359, 3085–3097 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brothers J.E., Ziemer W.P.: Minimal rearrangements of Sobolev functions. J. Reine Angew. Math. 384, 153–179 (1988)

    MathSciNet  MATH  Google Scholar 

  9. Burchard A.: Steiner symmetrization is continuous in W 1,p. Geom. Funct. Anal. 7, 823–860 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Campi S., Gronchi P.: The L p -Busemann–Petty centroid inequality. Adv. Math. 167, 128–141 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carlen E.A.: Superadditivity of Fisher’s information and logarithmic Sobolev inequalities. J. Funct. Anal. 101, 194–211 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carlen, E.A., Loss, M.: Sharp constant in Nash’s inequality. Int. Math. Res. Not. 213–215 (1993)

  13. Carleson L., Chang S.Y.A.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. 110, 113–127 (1986)

    MathSciNet  MATH  Google Scholar 

  14. Chiti G.: Rearrangements of functions and convergence in Orlicz spaces. Appl. Anal. 9, 23–27 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chou K.-S., Wang X.-J.: The L p -Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math. 205, 33–83 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cianchi A.: Second-order derivatives and rearrangements. Duke Math. J. 105, 355–385 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cianchi A.: Moser–Trudinger inequalities without boundary conditions and isoperimetric problems. Indiana Univ. Math. J. 54, 669–705 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cianchi A.: Moser–Trudinger trace inequalities. Adv. Math. 217, 2005–2044 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cianchi A., Esposito L., Fusco N., Trombetti C.: A quantitative Pólya–Szegö principle. J. Reine Angew. Math. 614, 153–189 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cianchi A., Fusco N.: Functions of bounded variation and rearrangements. Arch. Ration. Mech. Anal. 165, 1–40 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cianchi A., Fusco N.: Steiner symmetric extremals in Pólya–Szegö type inequalities. Adv. Math. 203, 673–728 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cianchi A., Fusco N.: Minimal rearrangements, strict convexity and minimal points. Appl. Anal. 85, 67–85 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cianchi A., Lutwak E., Yang D., Zhang G.: Affine Moser–Trudinger and Morrey–Sobolev inequalities. Calc. Var. Partial Differ. Equ. 36, 419–436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cohn W.S., Lu G.: Best constants for Moser–Trudinger inequalities on the Heisenberg group. Indiana Univ. Math. J. 50, 1567–1591 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cordero-Erausquin D., Nazaret B., Villani C.: A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. Math. 182, 307–332 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Del Pino M., Dolbeault J.: Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. 81, 847–875 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Del Pino M., Dolbeault J.: The optimal Euclidean L p-Sobolev logarithmic inequality. J. Funct. Anal. 197, 151–161 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Esposito L., Trombetti C.: Convex symmetrization and Pólya–Szegö inequality. Nonlinear Anal. 56, 43–62 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Federer H.: Geometric Measure Theory. Springer, Berlin (1969)

    MATH  Google Scholar 

  30. Federer H., Fleming W.: Normal and integral currents. Ann. Math. 72, 458–520 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ferone A., Volpicelli R.: Convex symmetrization: the equality case in the Pólya–Szegö inequality. Calc. Var. Part. Differ. Equ. 21, 259–272 (2004)

    MathSciNet  MATH  Google Scholar 

  32. Flucher M.: Extremal functions for Trudinger–Moser inequality in 2 dimensions. Comment. Math. Helvetici 67, 471–497 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gardner R.J.: The Brunn–Minkowksi inequality. Bull. Am. Math. Soc. (N.S.) 39, 355–405 (2002)

    Article  MATH  Google Scholar 

  34. Gross L.: Logarithmic Sobolev inequalities. Am. J. Math. 97, 1061–1083 (1975)

    Article  Google Scholar 

  35. Haberl C., Schuster F.E.: General L p affine isoperimetric inequalities. J. Differ. Geom. 83, 1–26 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Haberl C., Schuster F.E.: Asymmetric affine L p Sobolev inequalities. J. Funct. Anal. 257, 641–658 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hardy G., Littlewood J.E., Pólya G.: Inequalities. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  38. Hug D., Lutwak E., Yang D., Zhang G.: On the L p Minkowski problem for polytopes. Discrete Comput. Geom. 33, 699–715 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Humbert E.: Extremal functions for the sharp L 2-Nash inequality. Calc. Var. Partial Differ. Equ. 22, 21–44 (2005)

    MathSciNet  MATH  Google Scholar 

  40. Kawohl, B.: Rearrangements and convexity of level sets in PDE. In: Lecture Notes in Mathematics, vol. 1150. Springer, Berlin (1985)

  41. Kawohl B.: On the isoperimetric nature of a rearrangement inequality and its consequences for some variational problems. Arch. Ration. Mech. Anal. 94, 227–243 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kesavan S.: Symmetrization and Applications. Series in Analysis 3. World Scientific, Hackensack (2006)

    Google Scholar 

  43. Ledoux, M.: Isoperimetry and Gaussian analysis. In: Lectures on Probability Theory and Statistics (Saint-Flour, 1994). Lecture Notes in Mathematics, vol. 1648, pp. 165–294. Springer, Berlin (1996)

  44. Lieb E., Loss M.: Analysis. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001)

    Google Scholar 

  45. Lin K.C.: Extremal functions for Moser’s inequality. Trans. Am. Math. Soc. 348, 2663–2671 (1996)

    Article  MATH  Google Scholar 

  46. Ludwig M.: Ellipsoids and matrix-valued valuations. Duke Math. J. 119, 159–188 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ludwig M.: Minkowski valuations. Trans. Am. Math. Soc. 357, 4191–4213 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ludwig M., Reitzner M.: A classification of SL(n) invariant valuations. Ann. Math. 172, 1219–1267 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ludwig, M., Xiao, J., Zhang, G.: Sharp convex Lorentz-Sobolev inequalities. Math. Ann., 29. doi:10.1007/s00208-010-055-x

  50. Lutwak E.: On some affine isoperimetric inequalities. J. Differ. Geom. 23, 1–13 (1986)

    MathSciNet  MATH  Google Scholar 

  51. Lutwak E.: The Brunn–Minkowski–Firey theory. I. Mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131–150 (1993)

    MathSciNet  MATH  Google Scholar 

  52. Lutwak E.: The Brunn–Minkowski–Firey theory. II: Affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  53. Lutwak E., Oliker V.: On the regularity of solutions to a generalization of the Minkowski problem. J. Differ. Geom. 41, 227–246 (1995)

    MathSciNet  MATH  Google Scholar 

  54. Lutwak E., Yang D., Zhang G.: L p affine isoperimetric inequalities. J. Differ. Geom. 56, 111–132 (2000)

    MathSciNet  MATH  Google Scholar 

  55. Lutwak E., Yang D., Zhang G.: A new ellipsoid associated with convex bodies. Duke Math. J. 104, 375–390 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  56. Lutwak E., Yang D., Zhang G.: Sharp affine L p Sobolev inequalities. J. Differ. Geom. 62, 17–38 (2002)

    MathSciNet  MATH  Google Scholar 

  57. Lutwak E., Yang D., Zhang G.: On the L p Minkowski problem. Trans. Am. Math. Soc 356, 4359–4370 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  58. Lutwak, E., Yang, D., Zhang, G.: Optimal Sobolev norms and the L p Minkowski problem. Int. Math. Res. Not. 1–21 (2006)

  59. Maz’ya V.G.: Classes of domains and imbedding theorems for function spaces. Dokl. Akad. Nauk. SSSR 133, 527–530 (1960)

    Google Scholar 

  60. Moser J.: A sharp form of an inequality by Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970)

    Article  MathSciNet  Google Scholar 

  61. Petty, C.M.: Isoperimetric problems. In: Proc. Conf. Convexity and Combinatorial Geometry (Univ. Oklahoma 1971), pp. 26–41. University of Oklahoma (1972)

  62. Pólya, G., Szegö, G.: Isoperimetric inequalities in mathematical physics. Ann. Math. Stud. 27. Princeton University Press (1951)

  63. Ruf B.: A sharp Trudinger–Moser type inequality for unbounded domains in \({\mathbb{R}^2}\). J. Funct. Anal. 219, 340–367 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  64. Schneider R.: Convex Bodies: The Brunn–Minkowski Theory. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  65. Stam A.J.: Some inequalities satisfied by the quantities of information of Fisher and Shannon. Inform. Control 2, 255–269 (1959)

    Article  MathSciNet  Google Scholar 

  66. Talenti G.: Best constant in Sobolev inequality. Ann. Math. Pure Appl. 110, 353–372 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  67. Talenti G.: On isoperimetric theorems in mathematical physics. In: Gruber, P.M., Wills, J.M. (eds) Handbook of Convex Geometry, North-Holland, Amsterdam (1993)

    Google Scholar 

  68. Talenti, G.: Inequalities in rearrangement invariant function spaces. In: Krbec, M., Kufner, A., Opic, B., Rákosnik, J. (eds.) Nonlinear Analysis, Function Spaces and Applications, vol. 5, pp. 177–230. Prometheus, Prague (1994)

  69. Trudinger N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MathSciNet  MATH  Google Scholar 

  70. Weissler F.B.: Logarithmic Sobolev inequalities for the heat-diffusion semigroup. Trans. Am. Math. Soc. 237, 255–269 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  71. Xiao J.: The sharp Sobolev and isoperimetric inequalities split twice. Adv. Math. 211, 417–435 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  72. Zhang G.: The affine Sobolev inequality. J. Differ. Geom. 53, 183–202 (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xiao.

Additional information

Dedicated to Erwin Lutwak on the occasion of his sixty-fifth birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haberl, C., Schuster, F.E. & Xiao, J. An asymmetric affine Pólya–Szegö principle. Math. Ann. 352, 517–542 (2012). https://doi.org/10.1007/s00208-011-0640-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-011-0640-9

Mathematics Subject Classification (2000)

Navigation