Skip to main content
Log in

A smoothing property of the Bergman projection

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let B be the Bergman projection associated to a domain Ω on which the \({\bar\partial}\) -Neumann operator is compact. We show that arbitrary L 2 derivatives of Bf are controlled by derivatives of f taken in a single, distinguished direction. As a consequence, functions not contained in \({C^{\infty}(\overline{\Omega})}\) that are mapped by B to \({C^{\infty}(\overline{\Omega})}\) are explicitly described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahern P., Schneider R.: Holomorphic Lipschitz functions in pseudoconvex domains. Am. J. Math. 101(3), 543–565 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barrett D.E.: Regularity of the Bergman projection and local geometry of domains. Duke Math. J. 53(2), 333–343 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boas H.P.: The Szegő projection: Sobolev estimates in regular domains. Trans. Am. Math. Soc. 300(1), 109–132 (1987)

    MathSciNet  MATH  Google Scholar 

  4. Boas H.P., Straube E.J.: Sobolev estimates for the \({\overline\partial}\)-Neumann operator on domains in Cn admitting a defining function that is plurisubharmonic on the boundary. Math. Z. 206(1), 81–88 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Evans, L.C.: Partial differential equations. In: Graduate Studies in Mathematics, vol. 19. American Mathematical Society (1998)

  6. Fefferman C.: The Bergman kernel and biholomorphic mappings of pseudoconvex domains. Invent. Math. 26, 1–65 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  7. Folland G.B., Kohn J.J.: The Neumann Problem for the Cauchy-Riemann Complex. Annals of Mathematics Studies, No. 75. Princeton University Press, Princeton (1972)

    Google Scholar 

  8. Folland G.B., Stein E.M.: Estimates for the \({\bar \partial _{b}}\) complex and analysis on the Heisenberg group. Commun. Pure Appl. Math. 27, 429–522 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fu, S., Straube, E.J.: Compactness in the \({\overline\partial}\)-Neumann problem. In: Complex Analysis and Geometry (Columbus, OH, 1999). Volume 9 of Ohio State Univ. Math. Res. Inst. Publ., pp. 141–160. de Gruyter, Berlin (2001)

  10. Herbig A.-K., McNeal J.D.: Regularity of the Bergman projection on forms and plurisubharmonicity conditions. Math. Ann. 336(2), 335–359 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Koenig K.D.: On maximal Sobolev and H ölder estimates for the tangential Cauchy-Riemann operator and boundary Laplacian. Am. J. Math. 124(1), 129–197 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kohn, J.J.: A survey of the \({\bar \partial }\)-Neumann problem. In: Complex Analysis of Several Variables (Madison, Wis., 1982). Proc. Sympos. Pure Math., vol. 41, pp. 137–145. Amer. Math. Soc., Providence (1984)

  13. Kohn, J.J.: Quantitative estimates for global regularity. In: Analysis and Geometry in Several Complex Variables (Katata, 1997). Trends Math., pp. 97–128. Birkhäuser Boston, Boston (1999)

  14. Kohn J.J., Nirenberg L.: Non-coercive boundary value problems. Commun. Pure Appl. Math. 18, 443–492 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  15. McNeal J.D., Stein E.M.: Mapping properties of the Bergman projection on convex domains of finite type. Duke Math. J. 73(1), 177–199 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. McNeal J.D.: Boundary behavior of the Bergman kernel function in C2. Duke Math. J. 58(2), 499–512 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. McNeal, J.D.: Local geometry of decoupled pseudoconvex domains. In: Complex Analysis (Wuppertal, 1991). Aspects Math., E17, pp. 223–230. Vieweg, Braunschweig (1991)

  18. McNeal J.D.: Estimates on the Bergman kernels of convex domains. Adv. Math. 109(1), 108–139 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nagel A., Rosay J.-P., Stein E.M., Wainger S.: Estimates for the Bergman and Szegő kernels in C2. Ann. Math. (2) 129(1), 113–149 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Phong D.H., Stein E.M.: Estimates for the Bergman and Szegö projections on strongly pseudo-convex domains. Duke Math. J. 44(3), 695–704 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  21. Range R.M.: Holomorphic functions and integral representations in several complex variables. Graduate Texts in Mathematics, vol. 108. Springer, New York (1986)

    Google Scholar 

  22. Rothschild L.P., Stein E.M.: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137(3–4), 247–320 (1976)

    Article  MathSciNet  Google Scholar 

  23. Stein E.M.: Boundary values of holomorphic functions. Bull. Am. Math. Soc. 76, 1292–1296 (1970)

    Article  MATH  Google Scholar 

  24. Stein E.M.: Boundary Behavior of Holomorphic Functions of Several Complex Variables. Mathematical Notes, No. 11. Princeton University Press, Princeton (1972)

    Google Scholar 

  25. Stein E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. In: Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton (1993)

    Google Scholar 

  26. Straube E.J.: Lectures on the L 2-Sobolev theory of the \({\overline{\partial}}\) -Neumann problem. In: ESI Lectures in Mathematics and Physics. European Mathematical Society (EMS), Zürich (2010)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.-K. Herbig.

Additional information

Research of the A.-K. Herbig was supported by FWF grants P19147 and AY0037721; Research of the J. D. McNeal was partially supported by an NSF grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herbig, AK., McNeal, J.D. A smoothing property of the Bergman projection. Math. Ann. 354, 427–449 (2012). https://doi.org/10.1007/s00208-011-0734-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-011-0734-4

Mathematics Subject Classification (2000)

Navigation