Skip to main content
Log in

Spatially monotone homoclinic orbits in nonlinear parabolic equations of super-fast diffusion type

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

This work deals with positive classical solutions of the degenerate parabolic equation

$$u_t=u^p u_{xx} \quad \quad (\star)$$

when p > 2, which via the substitution v = u 1−p transforms into the super-fast diffusion equation \({v_t=(v^{m-1}v_x)_x}\) with \({m=-\frac{1}{p-1} \in (-1,0)}\) . It is shown that (\({\star}\)) possesses some entire positive classical solutions, defined for all \({t \in \mathbb {R}}\) and \({x \in \mathbb {R}}\) , which connect the trivial equilibrium to itself in the sense that u(x, t) → 0 both as t → −∞ and as t → + ∞, locally uniformly with respect to \({x \in \mathbb {R}}\) . Moreover, these solutions have quite a simple structure in that they are monotone increasing in space. The approach is based on the construction of two types of wave-like solutions, one of them being used for −∞ < t ≤  0 and the other one for 0 < t <  + ∞. Both types exhibit wave speeds that vary with time and tend to zero as t → −∞ and t → + ∞, respectively. The solutions thereby obtained decay as x → −∞, uniformly with respect to \({t \in \mathbb {R}}\) , but they are unbounded as x → + ∞. It is finally shown that within the class of functions having such a behavior as x → −∞, there does not exist any bounded homoclinic orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brunovský P., Fiedler B.: Connecting orbits in scalar reaction diffusion equations II. The complete solution. J. Differ. Equ. 81, 106–135 (1989)

    Article  MATH  Google Scholar 

  2. Dancer, E.N., Poláčik, P.: Realization of vector fields and dynamics of spatially homogeneous parabolic equations. In: Memoirs of American Mathematical Society, vol. 140 (1999)

  3. Esteban J.R., Rodriguez A., Vázquez J.L.: A nonlinear heat equation with singular diffusivity. Comm. Partial Diff. Equ. 13, 985–1039 (1988)

    Article  MATH  Google Scholar 

  4. Fiedler B., Rocha C.: Heteroclinic orbits of semilinear parabolic equations. J. Differ. Equ. 125, 239–281 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fiedler B., Rocha C.: Orbit equivalence of global attractors of semilinear parabolic differential equations. Trans. Am. Math. Soc. 352, 257–284 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fila M., Mizoguchi N.: Multiple continuation beyond blow-up. Differ. Int. Equ. 20, 671–680 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Fila M., Yanagida E.: Homoclinic and heteroclinic orbits for a semilinear parabolic equation. Tohoku Math. J. 63, 561–579 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Galaktionov V.A., Vázquez J.L.: Continuation of blow-up solutions of nonlinear heat equations in several space dimensions. Comm. Pure Appl. Math. 50, 1–67 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Haraux A., Poláčik P.: Convergence to positive equilibrium for some nonlinear evolution equations in a ball. Acta Math. Univ. Comenianae 61, 129–141 (1992)

    MATH  Google Scholar 

  10. Jendoubi M.A.: A simple unified approach to some convergence theorems of L. Simon. J. Funct. Anal. 153, 187–202 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ladyzenskaja O.A., Solonnikov V.A., Ural’ceva N.N.: Linear and Quasi-linear Equations of Parabolic Type. AMS, Providence (1968)

    Google Scholar 

  12. Lions P.L.: Structure of the set of steady-state solutions and asymptotic behaviour of semilinear heat equations. J. Differ. Equ. 53, 362–386 (1984)

    Article  MATH  Google Scholar 

  13. Matano H.: Convergence of solutions of one-dimensional semilinear parabolic equations. J. Math. Kyoto Univ. 18, 221–227 (1978)

    MathSciNet  MATH  Google Scholar 

  14. Poláčik P., Simondon F.: Nonconvergent bounded solutions of semilinear heat equations on arbitrary domains. J. Differ. Equ. 186, 586–610 (2002)

    Article  MATH  Google Scholar 

  15. Poláčik P., Yanagida E.: On bounded and unbounded global solutions of a supercritical semilinear heat equation. Math. Annalen 327, 745–771 (2003)

    Article  MATH  Google Scholar 

  16. Rodriguez A., Vázquez J.L.: A well-posed problem in singular Fickian diffusion. Arch. Rat. Mech. Anal. 110, 141–163 (1990)

    Article  MATH  Google Scholar 

  17. Tomi F.: Über semilineare elliptische Differentialgleichungen zweiter Ordnung. Math. Z. 111, 350–366 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vázquez J.L.: Non-existence of solutions for heat nonlinear equations of fast-diffusion type. J. Math. Pures Appliquées 71, 503–526 (1992)

    MATH  Google Scholar 

  19. Vázquez J.L.: Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type, Oxford Lecture Series in Mathematics and Its Applications, vol. 33. Oxford University Press, UK (2006)

    Google Scholar 

  20. Vázquez, J.L., Zuazua, E.: Complexity of large time behaviour of evolution equations with bounded data. In: Frontiers in Mathematical Analysis and Numerical Methods. pp. 267–295, World Sci. Publ. River Edge, New York (2004)

  21. Winkler M.: Large time behavior and stability of equilibria of degenerate parabolic equations. J. Dyn. Differ. Equ. 17, 331–351 (2005)

    Article  MATH  Google Scholar 

  22. Winkler M.: Nontrivial ordered ω-limit sets in a linear degenerate parabolic equation. Discrete Contin. Dyn. Syst. 17, 739–750 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Winkler M.: Oscillating solutions and large ω-limit sets in a degenerate parabolic equation. J. Dyn. Differ. Equ. 20, 87–113 (2008)

    Article  MATH  Google Scholar 

  24. Zelenyak T.I.: Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable. Differ. Equ. 4, 17– (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Winkler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkler, M. Spatially monotone homoclinic orbits in nonlinear parabolic equations of super-fast diffusion type. Math. Ann. 355, 519–549 (2013). https://doi.org/10.1007/s00208-012-0795-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-012-0795-z

Mathematics Subject Classification (2000)

Navigation