Skip to main content
Log in

Extracting invariants of isolated hypersurface singularities from their moduli algebras

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We use classical invariant theory to construct invariants of complex graded Gorenstein algebras of finite vector space dimension. As a consequence, we obtain a way of extracting certain numerical invariants of quasi-homogeneous isolated hypersurface singularities from their moduli algebras, which extends an earlier result due to the first author. Furthermore, we conjecture that the invariants so constructed solve the biholomorphic equivalence problem in the homogeneous case. The conjecture is easily verified for binary quartics and ternary cubics. We show that it also holds for binary quintics and sextics. In the latter cases the proofs are much more involved. In particular, we provide a complete list of canonical forms of binary sextics, which is a result of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The formulae for the discriminant that we use below in the cases \(m=2,3\) differ from the one given in [8] by scalar factors.

  2. This proof was suggested to us by A. Gorinov.

References

  1. Bass, H.: On the ubiquity of Gorenstein rings. Math. Z. 82, 8–28 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dieudonné, J.A., Carrell, J.B.: Invariant theory, old and new. Adv. Math. 4, 1–80 (1970)

    Article  MATH  Google Scholar 

  3. Eastwood, M.G.: Moduli of isolated hypersurface singularities. Asian J. Math. 8, 305–313 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Elliott, E.B.: An Introduction to the Algebra of Quantics. Oxford University Press, Oxford (1895)

    Google Scholar 

  5. Fels, G., Isaev, A., Kaup, W., Kruzhilin, N.: Isolated hypersurface singularities and special polynomial realizations of affine quadrics. J. Geom. Anal. 21, 767–782 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fels, G., Kaup, W.: Classification of commutative algebras and tube realizations of hyperquadrics. Preprint. http://arxiv.org/pdf/0906.5549v2

  7. Fels, G., Kaup, W.: Nilpotent algebras and affinely homogeneous surfaces. Math. Ann. 353, 1315–1350 (2012)

    Google Scholar 

  8. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants and Multidimensional Determinants. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston (2008)

    Google Scholar 

  9. Greuel, G.-M., Lossen, C., Shustin, E.: Introduction to Singularities and Deformations. Springer Monographs in Mathematics. Springer, Berlin (2007)

    Google Scholar 

  10. Huneke, C.: Hyman Bass and ubiquity: Gorenstein rings. In: Algebra, K-Theory, Groups, and Education (New York, 1997). Contemporary Mathematics, vol. 243, pp. 55–78. American Mathematical Society, Providence (1999)

  11. Isaev, A.V.: On the number of affine equivalence classes of spherical tube hypersurfaces. Math. Ann. 349, 59–74 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Isaev, A.V.: On the affine homogeneity of algebraic hypersurfaces arising from Gorenstein algebras. Asian J. Math. 15, 631–640 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Kraft, H.: Geometrische Methoden in der Invariantentheorie. Aspects of Mathematics D1. Vieweg, Braunschweig (1984)

    Book  Google Scholar 

  14. Martsinkovsky, A.: Maximal Cohen–Macaulay modules and the quasihomogeneity of isolated Cohen–Macaulay singularities. Proc. Am. Math. Soc. 112, 9–18 (1991)

    MathSciNet  MATH  Google Scholar 

  15. Mather, J., Yau, S.S.-T.: Classification of isolated hypersurface singularities by their moduli algebras. Invent. Math. 69, 243–251 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mukai, S.: An Introduction to Invariants and Moduli. Cambridge Studies in Advanced Mathematics, vol. 81. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  17. Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory. Results in Mathematics and Related Areas (2), vol. 34. Springer, Berlin (1994)

    Book  Google Scholar 

  18. Olver, P.: Classical Invariant Theory. London Mathematical Society Student Texts, vol. 44. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  19. Orlik, P., Solomon, L.: Singularities II; automorphisms of forms. Math. Ann. 231, 229–240 (1977/1978)

    Article  MathSciNet  Google Scholar 

  20. Saito, K.: Quasihomogene isolierte Singularitäten von Hyperflächen. Invent. Math. 14, 123–142 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  21. Saito, K.: Einfach-elliptische Singularitäten. Invent. Math. 23, 289–325 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sylvester, J.J.: On the calculus of forms, otherwise the theory of invariants. Camb. Dublin Math. J. IX, 85–104 (1854)

    Google Scholar 

  23. Sylvester, J.J.: Tables of generating functions and groundforms for the binary quantics of the first ten orders. Am. J. Math. 2, 223–251 (1879)

    Article  MathSciNet  Google Scholar 

  24. Weber, H.: Lehrbuch der Algebra. 2 Auflage, 2 Band. Vieweg, Braunschweig (1899)

    Google Scholar 

  25. Xu, Y.-J., Yau, S.S.-T.: Micro-local characterization of quasi-homogeneous singularities. Am. J. Math. 118, 389–399 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank A. Gorinov for suggesting a proof of Proposition 3.1. This work is supported by the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Isaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eastwood, M.G., Isaev, A.V. Extracting invariants of isolated hypersurface singularities from their moduli algebras. Math. Ann. 356, 73–98 (2013). https://doi.org/10.1007/s00208-012-0836-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-012-0836-7

Mathematics Subject Classification (2010)

Navigation