Skip to main content
Log in

Stability of Kähler-Ricci flow on a Fano manifold

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let \((M,J)\) be a Fano manifold which admits a Kähler-Einstein metric \(g_{KE}\) (or a Kähler-Ricci soliton \(g_{KS}\)). Then we prove that Kähler-Ricci flow on \((M,J)\) converges to \(g_{KE}\) (or \(g_{KS}\)) in \(C^\infty \) in the sense of Kähler potentials modulo holomorphisms transformation as long as an initial Kähler metric of flow is very closed to \(g_{KE}\) (or \(g_{KS}\)). The result improves Main Theorem in [14] in the sense of stability of Kähler-Ricci flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Throughout the paper, \(\Vert \psi \Vert _{C^{2,\alpha }}= \sum _\delta \sum _{|l|\le 2} \Vert \frac{\partial ^{l}\psi }{\partial ^{l} x^\delta }\Vert _{C^0(U^\delta )}+\sum _\delta \sum _{|l|=2} \Vert \frac{\partial ^{l}\psi }{\partial ^{l} x^\delta }\Vert _{C^\alpha (U^\delta )}\) denotes the usual Hölder \(C^{2,\alpha }\)-norm for a smooth function \(\psi \) with a fixed local complex coordinates system \(\{(U^\delta ; x^\delta )\}\) on \(M\).

  2. \(\text{ dist}(\sigma ,\sigma ^{\prime })\) denotes the distance between two pints \(\sigma \) and \(\sigma ^{\prime }\) in the Lie group \(\text{ Aut}_r(M)\) with a non-compact complete Riemannian metric.

References

  1. Bando, S., Mabuchi, T.: Uniqueness of Kähler Einstein metrics modulo connected group actions, Algebraic Geometry, Adv. Stud. Pure Math., pp. 11–40 (1987)

  2. Cao, H.D.: Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds. Invent. Math. 81, 359–372 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, X.X., Tian, G.: Ricci flow on Kähler-Einstein surfaces. Invent. Math. 147, 487–544 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, H.D., Tian, G., Zhu, X.H.: Kähler-Ricci solitons on compact Kähler manifolds with \(c_1(M)>0\). Geom. Funct. Anal. 15, 697–619 (2005)

    Google Scholar 

  5. Hamilton, R.S.: Three manifolds with positive Ricci curvature. J. Diff. Geom. 17, 255–306 (1982)

    MathSciNet  MATH  Google Scholar 

  6. Phong, D., Strum, J.: On the stability and convergence of the Kähler-Ricci flow. J. Diff. Geom. 72, 149–168 (2006)

    MATH  Google Scholar 

  7. Phong, D.H., Song, J., Sturm, J., Weinkove, B.: The Kähler-Ricci flow and the \(\overline{\partial }\) operator on vector fields. J. Diff. Geom. 81, 631–647 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159

  9. Sesum, N.: Convergence of a Kähler-Ricci flow. Math. Res. Lett. 12, 623–632 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Sesum, N., Tian, G.: Bounding scalar curvature and diameter along the Kähler-Ricci flow (after Perelman). J. Inst. Math. Jussieu 7, 575–587 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sun, S., Wang, Y.: On Kähler-Ricci flow near a Kähler-Einstein metric, arXiv:1004.2018, 2010

  12. Tian, G., Zhu, X.H.: Uniqueness of Kähler-Ricci solitons. Acta Math. 184, 271–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tian, G., Zhu, X.H.: A new holomorphic invariant and uniqueness of Kähler-Ricci solitons. Comm. Math. Helv. 77, 297–325 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tian, G., Zhu, X.H.: Convergence of Kähler-Ricci flow. J. Am. Math. Soc. 20, 675–699 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tian, G., Zhu, X.H.: Convergence of Kähler-Ricci flow on Fano manifolds, II, arxiv:1102.4798v1, to appear in J. Reine Angew. Math

  16. Tian, G., Zhang, S.J., Zhang, Z.L., Zhu, X.H.: Perelman’s entropy and Kähler-Ricci flow on a Fano manifold, to appear in Tran. AMS

  17. Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Comm. Pure Appl. Math. 31, 339–411 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhu, X.H.: Kähler-Ricci soliton type equations on compact complex manifolds with \(C_1(M)>0\). J. Geom. Anal. 10, 759–774 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhu, X.H.: Stability on Kähler-Ricci flow on a compact Kähler manifold with positive first Chern class, I, Arxiv/0908.1488v1

Download references

Acknowledgments

The paper is a revised version of preprint [19] (In case that the underlying manifold is a Fano Käher-Einstein one, Sun and Wang recently proved a more general stability theorem of Kähler-Ricci flow in the sense of Cheeger-Gromov topology [11].) posted in arXiv in 2009 which was partially finished when the author was visiting The Hausdorff Institute of Mathematics, University of Bonn in the Autumn of 2008. The author would like to thank her hospitality and financial support. The author would also like to thank professor Gang Tian and professor Xiuxiong Chen for their valuable discussions. Finally, the author is appreciated to the referee for suggestions to improve presentation of the paper, particularly, valuable discussions on Lemma 1.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Zhu.

Additional information

Partially supported by NSF10990013 and NSF11271022 in China.

Appendix

Appendix

The following proposition is about the existence of almost orthonormality of Kähler potential to \(\Lambda _1(M,\omega _{KS})\), the space of first eigenvalue-functions of operator \((P,\omega _{KS})\) defined in Lemma 2.2 in Sect. 2. The proposition is crucial in the proof ofProposition 3.9.

Proposition 4.1

Let \(M\) be a compact Kähler manifold \(M\) with \(c_1(M)>0\) which admits a Kähler-Ricci soliton \((\omega _{KS}, X_0)\). Then for any Kähler potential \(\phi \in \mathcal{K }(\epsilon _0)\) there exists a \(\sigma \in \text{ Aut}_r(M)\) with \(\text{ dist}(\sigma ,\text{ Id})\le A\) Footnote 2 for some uniform constant \(A\) such that for any \(Y\in \eta _r(M)\) with \(\int _M|Y|^2\omega _{KS}^n=1\), it holds

$$\begin{aligned} \left|\int _M \theta _Y^{\prime } (\sigma ^*\phi +\rho _\sigma )e^{\theta _X}\omega _{KS}^n\right|\le C\Vert X^{\prime }(\phi )\Vert _{C^0}^2=O(\epsilon _0^2), \end{aligned}$$

where \(\theta _Y^{\prime }\in \text{ ker}(P,\omega _{KS})\) and \(\rho _\sigma \) is a Kähler potential defined by

$$\begin{aligned} \sigma ^*(\omega _{KS})=\omega _{KS}+ \sqrt{-1}\partial \bar{\partial }\rho _\sigma \end{aligned}$$

with \(\rho _\sigma \in \Lambda _1^\bot (M,\omega _{KS})\).

Proof

This proposition was proved in [12] if \(\phi \) is \(K_0\)-invariant. The key point in the proof is to use a functional defined on a space of Kähler-Ricci solitons

$$\begin{aligned} \{\omega _{KS}^{\prime }=\sigma ^*(\omega _{KE})=\omega _{KS}+ \sqrt{-1}\partial \bar{\partial }\rho _\sigma |\quad \, \sigma \in \text{ Aut}_r(M)\}, \end{aligned}$$

which was introduced in [18] by

$$\begin{aligned}&(I-J)(\omega _\phi ,\omega _{KS}^{\prime })\\&\quad =\int _0^1 dt\int _M \dot{\phi }_te^{\theta _{X_0}(\phi _t)}\omega _{\phi _t}^n -\int _M (-\phi +\rho )e^{\theta _{X_0}+X(\rho )}(\omega _{KS}^{\prime })^n, \end{aligned}$$

where \(\phi _t\) is a \(K_{X_0}\)-invariant path in \(\mathcal{M }(\omega _{KS})\) which connects \(0\) and \(-\phi +\rho \), and \(\theta _{X_0}(\phi _t)\) are potentials of \(X_0\) associated to metric \(\omega _{\phi _t}\) defined by (2.1). It is proved in [18] that \( (I-J)(\omega _\phi ,\omega _{KS}^{\prime }) \) is well-defined for a \(K_0\)-invariant \(\phi \), i.e., the functional is independent of choice of a path of \(K_0\)-invariant Kähler potentials. But for a general Kähler potential \(\phi \), \((I-J)(\omega _\phi ,\omega _{KS}^{\prime })\) is not well-defined (e.g., see (4.4) below), so we shall introduce another functional defined on whole space \(\mathcal{M }(\omega _{KS})\) to replace it. In fact, we will consider the following functional

$$\begin{aligned} \mathcal{F }(\omega _\phi ,\omega _{KS}^{\prime })&= \text{ Re}\left[\int _0^1 dt\int _M (-\phi +\rho _\sigma )e^{\theta _{X_0}(t(-\phi +\rho _\sigma ))}\omega _{t(-\phi +\rho _\sigma )}^n\right.\nonumber \\ \quad&-\left.\int _M (-\phi +\rho )e^{\theta _{X_0}^{\prime }}(\omega _{KS}^{\prime })^n\right]. \end{aligned}$$
(4.1)

Clearly, the definition of \(\mathcal{F }\) just uses a real part of \((I-J)(\omega _\phi ,\omega _{KS}^{\prime })\) while a path of Kähler potentials is chosen by \(\phi _t=t(-\phi +\rho _\sigma )\). We now consider a path of Kähler potentials \(\rho _t\) induced by an one-parameter subgroup \(\sigma _t\) generated by the real part of \(Y\in \eta _r(M)\), i.e. \(\rho _t\) are defined by \(\omega _t=\sigma _t^*\omega _{KS}^{\prime }=\omega _{KS}^{\prime }+\sqrt{-1}\partial \bar{\partial }\rho _t\). Let

$$\begin{aligned} f_Y(t)=\text{ Re}\left[\int _0^{1+t} ds\int _M (\dot{\phi }_s)e^{\theta _{X_0}(\phi _s)}\omega _{\phi _s}^n -\int _M (-\phi +\rho _t)e^{\theta _{X_0}(\omega _t)}\omega _t^n\right], \end{aligned}$$
(4.2)

where \(\phi _s\) is a path in \(\mathcal{M }(\omega _{KS})\) defined by \(\phi _s=s(-\phi +\rho _\sigma ), ~\forall ~0\le s\le 1\) and \(\phi _s=-\phi +\rho _\sigma +\rho _t\), \(1\le s\le 1+t\). It is easy to see

$$\begin{aligned} \frac{d}{dt} f_Y(t)|_{t=0}=\int _M \theta _Y^{\prime } (-\varphi +\rho _\sigma )e^{\theta _{X_0}^{\prime }}(\omega _{KS}^{\prime })^n. \end{aligned}$$

This implies

$$\begin{aligned} \frac{d}{dt} f_Y(t)|_{t=0}=-\int _M \theta _Y^{\prime } ((\sigma ^{-1})^*\varphi +\rho _{\sigma ^{-1}})e^{\theta _X}\omega _{KS}^n \end{aligned}$$
(4.3)

The gap between \( f_Y(t)\) and \(\mathcal{F }(\omega _\phi ,\omega _t)\) can be computed as follows. Let \(\Delta =\{(\tau ,s)|~0\le \tau \le 1,~0\le s\le \tau +(1-\tau )(1+t)\)} be a domain in \(\mathbb{R }^2\). Let \(\Phi =\Phi (\tau ,s;\cdot )\) be a family of Kähler potentials with two parameters \((\tau , s)\in \Delta \) which satisfy:

$$\begin{aligned} \Phi&= s(-\phi +\rho _\sigma +\rho _t),\quad \, 0\le s\le 1,\quad \, ~\text{ as}~ \tau =1;\\ \Phi&= \phi _s, ~0\le s\le 1+t,~\text{ as}~ \tau =0;\\ \Phi&= 0,~\text{ as}~s=0;\\ \Phi&= -\phi +\rho _\sigma +\rho _t,~s=\tau +(1-\tau )(1+t). \end{aligned}$$

Then by using the Stoke’s formula, we have

$$\begin{aligned}&|f_Y(t)-\mathcal{F }(\omega _\phi ,\omega _t)|\nonumber \\ \quad&=\left|\text{ Re}\left\{ \int _{\partial \Delta } \int _M d_{\tau ,s}\Phi (\tau ,s;\cdot ) e^{\theta _{X_0}(\phi _s)}\omega _{\phi _s}^n \right\} \right|\nonumber \\ \quad&=\left|\text{ Re}\left\{ \int _\Delta d\tau ds\int _M \dot{\Phi }_\tau (\langle \overline{\partial }\dot{\Phi }_s,\overline{\partial }\theta _{X_0}(\Phi )\rangle \nonumber \right.\right.\\ \qquad&\left.\left.-\langle \overline{\partial }\theta _{X_0}(\Phi ),\overline{\partial }\dot{\Phi }_s\rangle )e^{\theta _{X_0}(\Phi )}\omega _{\Phi }^n\right\} \right|\nonumber \\ \quad&=2\left|\text{ Re}\left\{ \int _\Delta d\tau ds\int _M \dot{\Phi }_\tau \text{ Im}(X_0(\Phi _s))e^{\theta _{X_0}(\Phi )}\omega _{\Phi }^n\right\} \right|\nonumber \\ \quad&\le C\Vert X^{\prime }(\phi )\Vert _{C^0}^2. \end{aligned}$$
(4.4)

At the last inequality, we used a fact that \(X_0(\rho _\sigma )\) and \(X_0(\rho _t)\) are both real-valued. Similarly, we can get

$$\begin{aligned} \left|\frac{d}{dt}(f_Y(t)-\mathcal{F }(\omega _\phi ,\omega _t))\right|_{t=0} \le C\Vert X^{\prime }(\phi )\Vert _{C^0}^2. \end{aligned}$$
(4.5)

Next we claim

$$\begin{aligned} \mathcal{F }(\sigma )=\mathcal{F }(\omega _\phi ,\omega _{KS}^{\prime })= O(\text{ osc}_M\rho _\sigma )\rightarrow +\infty ,\quad \, \text{ as} ~\text{ dist}(\sigma , \text{ Id})\rightarrow \infty . \end{aligned}$$
(4.6)

In fact, as in the proof of Lemma 3.3 in [12] together with the assumption of \(\phi \in \mathcal{K }(\epsilon _0)\), one can estimate

$$\begin{aligned} \mathcal{F }(\sigma )&= O\left(\int _M (-\phi +\rho _\sigma )(\omega _\phi ^n-(\omega _{KS}^{\prime })^n)\right).\\&= O\left(\int _M \rho _\sigma (\omega _{KS}^n-(\omega _{KS}^{\prime })^n)\right). \end{aligned}$$

By using the Green formula, it follows

$$\begin{aligned} \mathcal{F }(\sigma ) = O(\text{ osc}_M\rho _\sigma ). \end{aligned}$$

Thus the claim is true.

By the above claim, we can take a minimizing sequence of \(\mathcal{F }(\sigma )\) for \(\sigma \) in \(\text{ Aut}_r(M)\) so that for any small \(\epsilon \le \epsilon _0^2\), there exists a \(\sigma \in \text{ Aut}_r(M)\) with bounded \(\text{ dist}(\sigma , \text{ Id})\) such that

$$\begin{aligned} |D\mathcal{F }(\sigma )(Y)|\le \epsilon , \end{aligned}$$
(4.7)

for any \(Y\in \eta _r(M)\) with \(\int _M|Y|^2\omega _{KS}^n=1\). Therefore combining (4.3)–(4.5) with (4.7), we prove Proposition 3.10 while \(\sigma \) is replaced by \(\sigma ^{-1}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X. Stability of Kähler-Ricci flow on a Fano manifold. Math. Ann. 356, 1425–1454 (2013). https://doi.org/10.1007/s00208-012-0889-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-012-0889-7

Mathematics Subject Classification (1991)

Navigation