Skip to main content
Log in

Nonscattering solutions and blowup at infinity for the critical wave equation

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We consider the critical focusing wave equation \((-\partial _t^2+\Delta )u+u^5=0\) in \({\mathbb{R }}^{1+3}\) and prove the existence of energy class solutions which are of the form

$$\begin{aligned} u(t,x)=t^\frac{\mu }{2}W(t^\mu x)+\eta (t,x) \end{aligned}$$

in the forward lightcone \(\{(t,x)\in {\mathbb{R }}\times {\mathbb{R }}^3: |x|\le t, t\gg 1\}\) where \(W(x)=(1+\frac{1}{3} |x|^2)^{-\frac{1}{2}}\) is the ground state soliton, \(\mu \) is an arbitrary prescribed real number (positive or negative) with \(|\mu |\ll 1\), and the error \(\eta \) satisfies

$$\begin{aligned} \Vert \partial _t \eta (t,\cdot )\Vert _{L^2(B_t)} +\Vert \nabla \eta (t,\cdot )\Vert _{L^2(B_t)}\ll 1,\quad B_t:=\{x\in {\mathbb{R }}^3: |x|<t\} \end{aligned}$$

for all \(t\gg 1\). Furthermore, the kinetic energy of \(u\) outside the cone is small. Consequently, depending on the sign of \(\mu \), we obtain two new types of solutions which either concentrate as \(t\rightarrow \infty \) (with a continuum of rates) or stay bounded but do not scatter. In particular, these solutions contradict a strong version of the soliton resolution conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The existence of ground state solitons, i.e., positive static solutions with finite energy such as \(W\) requires \(p=5\) in spatial dimension 3, cf. [15, 19].

  2. A type II blowup solution stays bounded in the energy space. The solutions constructed in [27] are of this type.

  3. We use this convention for “historical” reasons, cf. [27].

  4. In fact, we have to work with a vector-valued function \(x\) since \(\mathcal{L }\) has a negative eigenvalue. This is not essential for the argument but complicates the notation. Thus, for the moment we ignore this issue.

  5. In other words, \(M_\text{ id}f(\xi )=\xi f(\xi )\).

  6. Here and in the following we employ the convenient abbreviation \(u[t]=(u(t,\cdot ),\partial _t u(t,\cdot ))\).

  7. A “free wave” is a function \(v:{\mathbb{R }}\times {\mathbb{R }}^3\rightarrow {\mathbb{R }}\) such that the map \(t \mapsto \Vert v[t]\Vert _{\dot{H}^1\times L^2({\mathbb{R }}^3)}\) is continuous (in particular, \(\Vert v[t]\Vert _{\dot{H}^1\times L^2({\mathbb{R }}^3)}\lesssim 1\) for any \(t\in {\mathbb{R }}\)) and \(v(t,\cdot )=\cos (t|\nabla |)v(0,\cdot )+|\nabla |^{-1}\sin (t|\nabla |)\partial _1 v(0,\cdot )\), i.e., \(\Box v=0\) in the weak sense.

References

  1. Bahouri, H., Gérard, P.: High frequency approximation of solutions to critical nonlinear wave equations. Am. J. Math. 121(1), 131–175 (1999)

    Article  MATH  Google Scholar 

  2. Bahouri, H., Shatah, J.: Decay estimates for the critical semilinear wave equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 15(6), 783–789 (1998)

    Google Scholar 

  3. Bergh, J., Löfström, J.: Interpolation spaces. An introduction. Springer, Berlin (1976, Grundlehren der Mathematischen Wissenschaften, No. 223)

  4. Piotr, B., Tadeusz, C., Zbisław, T.: On blowup for semilinear wave equations with a focusing nonlinearity. Nonlinearity 17(6), 2187–2201 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Deift, P., Trubowitz, E.: Inverse scattering on the line. Comm. Pure Appl. Math. 32(2), 121–251 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Donninger, R., Schörkhuber, B.: Stable blow up dynamics for energy supercritical wave equations. Preprint arXiv:1207.7046 (2012)

    Google Scholar 

  7. Donninger, R., Schörkhuber, B.: Stable self-similar blow up for energy subcritical wave equations. Dyn. Partial Diff. Equ. 9(1), 63–87 (2012)

    MATH  Google Scholar 

  8. Dunford, N., Schwartz, J.T.: Linear operators. Spectral theory. Self adjoint operators in Hilbert space, Part II. With the assistance of William G. Bade and Robert G. Bartle. Wiley, New York (1963)

  9. Duyckaerts, T., Kenig, C., Merle, F.: Universality of the blow-up profile for small type II blow-up solutions of energy-critical wave equation: the non-radial case. Preprint arXiv:1003.0625 (2010)

    Google Scholar 

  10. Duyckaerts, T., Kenig, C., Merle, F.: Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation. J. Eur. Math. Soc. (JEMS) 13(3), 533–599 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Duyckaerts, T., Kenig, C., Merle, F.: Classification of radial solutions of the focusing, energy-critical wave equation. Preprint arXiv:1204.0031 (2012)

    Google Scholar 

  12. Duyckaerts, T., Kenig, C., Merle, F.: Profiles of bounded radial solutions of the focusing, energy-critical wave equation. Geom. Funct. Anal. (2012, to appear)

  13. Duyckaerts, T., Merle, F.: Dynamics of threshold solutions for energy-critical wave equation. Int. Math. Res. Pap. IMRP, pages Art ID rpn002, 67, (2008)

  14. Gesztesy, F., Maxim, Z.: On spectral theory for Schrödinger operators with strongly singular potentials. Math. Nachr. 279(9–10), 1041–1082 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math. 34(4), 525–598 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ginibre, J., Soffer, A., Velo, G.: The global Cauchy problem for the critical nonlinear wave equation. J. Funct. Anal. 110(1), 96–130 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grillakis, M.G.: Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity. Ann. Math. (2) 132(3), 485–509 (1990)

    Google Scholar 

  18. Hillairet, M., Raphaël, P.: Smooth type II blow up solutions to the four dimensional energy critical wave equation. Preprint arXiv:1010.1768 (2010)

    Google Scholar 

  19. Johnson, R.A., Bin, P.X., Yingfei, Y.: Positive solutions of super-critical elliptic equations and asymptotics. Comm. Partial Diff. Equ. 18(5–6), 977–1019 (1993)

    Article  MATH  Google Scholar 

  20. Lev, K.: Global and unique weak solutions of nonlinear wave equations. Math. Res. Lett. 1(2), 211–223 (1994)

    MathSciNet  MATH  Google Scholar 

  21. Kenig, C.E., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math. 201(2), 147–212 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Krieger, J., Schlag, W.: On the focusing critical semi-linear wave equation. Am. J. Math. 129(3), 843–913 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Krieger, J., Schlag, W., Tataru, D.: Renormalization and blow up for charge one equivariant critical wave maps. Invent. Math. 171(3), 543–615 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Krieger, J., Schlag, W., Tataru, D.: Renormalization and blow up for the critical Yang-Mills problem. Adv. Math. 221(5), 1445–1521 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Krieger, J., Nakanishi, K., Schlag, W.: Global dynamics away from the ground state for the energy-critical nonlinear wave equation. Preprint arXiv:1010.3799 (2010)

    Google Scholar 

  26. Krieger, J., Nakanishi, K., Schlag, W.: Global dynamics of the nonradial energy-critical wave equation above the ground state energy. Preprint arXiv:1112.5663 (2011)

    Google Scholar 

  27. Krieger, J., Schlag, W., Tataru, D.: Slow blow-up solutions for the \(H^1({\mathbb{R}}^3)\) critical focusing semilinear wave equation. Duke Math. J. 147(1), 1–53 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Levine, H.A.: Instability and nonexistence of global solutions to nonlinear wave equations of the form \(Pu_{tt}=-Au+{\cal \,F}(u)\). Trans. Am. Math. Soc. 192, 1–21 (1974)

    MATH  Google Scholar 

  29. Lindblad, H., Sogge, C.D.: On existence and scattering with minimal regularity for semilinear wave equations. J. Funct. Anal. 130(2), 357–426 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Merle, F., Raphael, P.: On universality of blow-up profile for \(L^2\) critical nonlinear Schrödinger equation. Invent. Math. 156(3), 565–672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Merle, F., Raphael, P.: The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann. Math. (2) 161(1):157–222 (2005)

    Google Scholar 

  32. Merle, F., Raphael, P.: On a sharp lower bound on the blow-up rate for the \(L^2\) critical nonlinear Schrödinger equation. J. Am. Math. Soc. 19(1):37–90 (2006, electronic)

    Google Scholar 

  33. Merle, F., Zaag, H.: Determination of the blow-up rate for the semilinear wave equation. Am. J. Math. 125(5), 1147–1164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Frank, M., Zaag, H.: Determination of the blow-up rate for a critical semilinear wave equation. Math. Ann. 331(2), 395–416 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Olver, F.W.J.: Asymptotics and special functions. Computer Science and Applied Mathematics. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York (1974)

  36. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST handbook of mathematical functions. U.S. Department of Commerce National Institute of Standards and Technology, Washington, DC: With 1 CD-ROM. Windows, Macintosh and UNIX (2010)

  37. Pecher, H.: Nonlinear small data scattering for the wave and Klein-Gordon equation. Math. Z. 185(2), 261–270 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  38. Perelman, G.: On the formation of singularities in solutions of the critical nonlinear Schrödinger equation. Ann. Henri Poincaré 2(4), 605–673 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rauch, J.: I. The \(u^{5}\) Klein-Gordon equation. II. Anomalous singularities for semilinear wave equations. In: Nonlinear partial differential equations and their applications. Collège de France Seminar, vol. I (Paris, 1978/1979). Res. Notes in Math., vol. 53, pp. 335–364. Pitman, Boston (1981)

  40. Shatah, J., Struwe, M.: Regularity results for nonlinear wave equations. Ann. Math. (2) 138(3), 503–518 (1993)

    Google Scholar 

  41. Shatah, J., Struwe, M.: Well-posedness in the energy space for semilinear wave equations with critical growth. Int. Math. Res. Notices (7):303ff (1994, electronic)

  42. Soffer, A.: Soliton dynamics and scattering. In: International Congress of Mathematicians, vol. III, pp. 459–471. Eur. Math. Soc., Zürich (2006)

  43. Sogge, C.D.: Lectures on non-linear wave equations, 2nd edn. International Press, Boston (2008)

    Google Scholar 

  44. Struwe, M.: Globally regular solutions to the \(u^5\) Klein-Gordon equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15(3), 495–513 (1989, 1988)

  45. Szpak, N.: Relaxation to intermediate attractors in nonlinear wave equations. Theor. Math. Phys. 127, 817–826 (2001). doi:10.1023/A:1010460004007

    Article  MathSciNet  MATH  Google Scholar 

  46. Terence, T.: On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation. Dyn. Partial Diff. Equ. 1(1), 1–48 (2004)

    MATH  Google Scholar 

  47. Terence, T.: Spacetime bounds for the energy-critical nonlinear wave equation in three spatial dimensions. Dyn. Partial Diff. Equ. 3(2), 93–110 (2006)

    MATH  Google Scholar 

  48. Taylor, M.E.: Tools for PDE. Mathematical Surveys and Monographs, vol. 81. Pseudodifferential operators, paradifferential operators, and layer potentials. American Mathematical Society, Providence (2000)

  49. Teschl, G.: Mathematical methods in quantum mechanics. Graduate Studies in Mathematics, vol. 99. American Mathematical Society, Providence (2009) (With applications to Schrödinger operators)

  50. Weidmann, J.: Lineare Operatoren in Hilberträumen. Teil II. Mathematische Leitfäden. [Mathematical Textbooks]. B. G. Teubner, Stuttgart (2003). Anwendungen. [Applications]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Krieger.

Additional information

The authors would like to thank T. Duyckaerts for suggesting this problem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donninger, R., Krieger, J. Nonscattering solutions and blowup at infinity for the critical wave equation. Math. Ann. 357, 89–163 (2013). https://doi.org/10.1007/s00208-013-0898-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-013-0898-1

Navigation