Skip to main content
Log in

The mixed Littlewood conjecture for pseudo-absolute values

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper we study the mixed Littlewood Conjecture with pseudo-absolute values. We show that if \(p\) is a prime and \(\mathcal D \) is a pseudo-absolute value sequence satisfying mild conditions then

$$\begin{aligned} \inf _{n\in \mathbb N } n|n|_p|n|_\mathcal D \Vert n\alpha \Vert =0\quad \text{ for } \text{ all }\,\,\alpha \in \mathbb R . \end{aligned}$$

Our proof relies on a measure rigidity theorem due to Lindenstrauss and lower bounds for linear forms in logarithms due to Baker and Wüstholz. We also deduce the answer to the related metric question of how fast the infimum above tends to zero, for almost every \(\alpha \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Badziahin, D., Velani, S.: Multiplicatively badly approximable numbers and generalised Cantor sets. Adv. Math. 228(5), 2766–2796 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baker, A., Wüstholz, G.: Logarithmic forms and group varieties. J. Reine Angew. Math. 442, 19–62 (1993)

    MathSciNet  MATH  Google Scholar 

  3. Bernstein, F.: Über eine anwendung der mengenlehre auf ein aus der theorie der säkularen störungen herrührendes problem. Math. Ann. 71(3), 417–439 (1911)

    Article  MathSciNet  Google Scholar 

  4. Borel, E.: Les probabilités dénombrables et leurs applications arithmétiques. Rend. Circ. Mat. Palermo 27, 247–271 (1909)

    Article  MATH  Google Scholar 

  5. Bourgain, J., Lindenstrauss, E., Michel, P., Venkatesh, A.: Some effective results for \(\times a\times b\). Ergodic Theory Dyn. Syst. 29(6), 1705–1722 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bugeaud, Y., Drmota, M., de Mathan, B.: On a mixed Littlewood conjecture in Diophantine approximation. Acta Arith. 128(2), 107–124 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bugeaud, Y., Haynes, A., Velani, S.: Metric considerations concerning the mixed Littlewood conjecture. Int. J. Number Theory (to appear) (2013); arXiv:0909.3923, 1–17 (2009)

  8. Duffin, R.J., Schaeffer, A.C.: Khintchine’s problem in metric Diophantine approximation. Duke J. 8, 243–255 (1941)

    Article  MathSciNet  Google Scholar 

  9. Einsiedler, M., Fishman, L., Shapira, U.: Diophantine approximations on fractals. Geom. Funct. Anal. 21(1), 14–35 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Einsiedler, M., Katok, A., Lindenstrauss, E.: Invariant measures and the set of exceptions to Littlewood’s conjecture. Ann. Math. 164, 513–560 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Einsiedler, M., Kleinbock, D.: Measure rigidity and \(p\)-adic Littlewood-type problems. Compositio Math. 143, 689–702 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Furstenberg, H.: Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Syst. Theory 1, 1–49 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gallagher, P.: Metric simultaneous Diophantine aproximations. J. Lond. Math. Soc. 37, 387–390 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Oxford University Press, Oxford (1980)

    Google Scholar 

  15. Harrap, S., Yusupova, T.: On a mixed Khintchine problem in Diophantine approximation. Mosc. J. Comb. Number Theory (to appear), (2013); Preprint: arXiv:1201.4694

  16. Lindenstrauss, E.: Invariant measures and arithmetic quantum unique ergodicity, Ann. Math. (2) 163(1), 165–219 (2006)

    Google Scholar 

  17. de Mathan, B.: On a mixed Littlewood conjecture for quadratic numbers. J. Théor. Nombres Bordeaux 17(1), 207–215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. de Mathan, B., Teulié, O.: Problèmes Diophantiens simultanés. Monatsh. Math. 143, 229–245 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Phelps, R.: Lectures on Choquet’s Theorem. Lecture Notes in Mathematics, vol. 1757, 2nd edn. Springer, Berlin (2001)

    Google Scholar 

  20. Shapira, U.: On a generalization of Littlewood’s conjecture. J. Mod. Dyn. 3(3), 457–477 (2009)

    Google Scholar 

  21. Walters, P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics, vol. 79. Springer, Berlin (1982)

    Book  Google Scholar 

Download references

Acknowledgments

We would like to thank Sanju Velani for encouraging us to look at these problems, which seem to have first been proposed in a systematic way in [1, Section 1.3]. The second author would like to thank Barak Weiss for helpful conversations regarding this project and the first author would also like to thank Simon Kristensen for various discussions. We would also like to thank the referee, whose suggestions resulted in the separation of Theorem 2 from the proof of Theorem 1, among other improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Haynes.

Additional information

AH: Research supported by EPSRC grant EP/F027028/1, and by a fellowship from the Heilbronn Institute for Mathematical Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrap, S., Haynes, A. The mixed Littlewood conjecture for pseudo-absolute values. Math. Ann. 357, 941–960 (2013). https://doi.org/10.1007/s00208-013-0928-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-013-0928-z

Mathematics Subject Classification (2000)

Navigation