Skip to main content
Log in

Conical stochastic maximal \(L^p\)-regularity for \(1\leqslant p<\infty \)

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let \(A = -\mathrm{div} \,a(\cdot ) \nabla \) be a second order divergence form elliptic operator on \({\mathbb R}^n\) with bounded measurable real-valued coefficients and let \(W\) be a cylindrical Brownian motion in a Hilbert space \(H\). Our main result implies that the stochastic convolution process

$$\begin{aligned} u(t) = \int _0^t e^{-(t-s)A}g(s)\,dW(s), \quad t\geqslant 0, \end{aligned}$$

satisfies, for all \(1\leqslant p<\infty \), a conical maximal \(L^p\)-regularity estimate

$$\begin{aligned} {\mathbb E}\Vert \nabla u \Vert _{ T_2^{p,2}({\mathbb R}_+\times {\mathbb R}^n)}^p \leqslant C_p^p {\mathbb E}\Vert g \Vert _{ T_2^{p,2}({\mathbb R}_+\times {\mathbb R}^n;H)}^p. \end{aligned}$$

Here, \(T_2^{p,2}({\mathbb R}_+\times {\mathbb R}^n)\) and \(T_2^{p,2}({\mathbb R}_+\times {\mathbb R}^n;H)\) are the parabolic tent spaces of real-valued and \(H\)-valued functions, respectively. This contrasts with Krylov’s maximal \(L^p\)-regularity estimate

$$\begin{aligned} {\mathbb E}\Vert \nabla u \Vert _{L^p({\mathbb R}_+;L^2({\mathbb R}^n;{\mathbb R}^n))}^p \leqslant C^p {\mathbb E}\Vert g \Vert _{L^p({\mathbb R}_+;L^2({\mathbb R}^n;H))}^p \end{aligned}$$

which is known to hold only for \(2\leqslant p<\infty \), even when \(A = -\Delta \) and \(H = {\mathbb R}\). The proof is based on an \(L^2\)-estimate and extrapolation arguments which use the fact that \(A\) satisfies suitable off-diagonal bounds. Our results are applied to obtain conical stochastic maximal \(L^p\)-regularity for a class of nonlinear SPDEs with rough initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auscher, P.: On necessary and sufficient conditions for \(L^p\)-estimates of Riesz transforms associated to elliptic operators on \(\mathbb{R}^n\) and related estimates. Mem. Amer. Math. Soc. 186, no. 871, xviii+7 (2007)

  2. Auscher, P.: Change of angle in tent spaces. C. R. Math. Acad. Sci. Paris 349(5–6), 297–301 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Auscher, P., Axelsson, A.: Remarks on maximal regularity, Herbert Amann Festschrift, Progress in Nonlinear Differential Equations and Their Applications, vol. 80, pp. 45–56. Birkhäuser (2011)

  4. Auscher, P., Axelsson, A.: Weighted maximal regularity estimates and solvability of non-smooth elliptic systems I. Invent. Math. 184(1), 47–115 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Auscher, P., Hofmann, S., Martell, J.M.: Vertical versus conical square functions. Trans. Am. Math. Soc. arxiv:1012.4184 (2010)

  6. Auscher, P., Hofmann, S., Lacey, M., McIntosh, A., Tchamitchian, Ph.: The solution of the Kato square root problem for second order elliptic operators on \(\mathbb{R}^n\). Ann. Math. 156(2), 633–654 (2002)

  7. Auscher, P., Kriegler, C., Monniaux, S., Portal, P.: Singular integral operators on tent spaces. J. Evol. Equ. 12(4), 741–765 (2012)

    Google Scholar 

  8. Auscher, P., Martell, J.M.: Weighted norm inequalities, off-diagonal estimates and elliptic operators. II. Off-diagonal estimates on spaces of homogeneous type. J. Evol. Equ. 7(2), 265–316 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Auscher, P., McIntosh, A., Russ, E.: Hardy spaces of differential forms on Riemannian manifolds. J. Geom. Anal. 18(1), 192–248 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Auscher, P., Monniaux, S., Portal, P.: The maximal regularity operator on tent spaces. Commun. Pure Appl. Anal. 11(6), 2213–2219 (2012)

    Google Scholar 

  11. Auscher, P., Tchamitchian, Ph.: Square root problem for divergence operators and related topics. Astérisque no. 249, viii+172 (1998)

  12. Axelsson, A., Stephen, K., McIntosh, A.: Quadratic estimates and functional calculi of perturbed Dirac operators. Invent. Math. 163(3), 455–497 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Blunck, S., Kunstmann, P.C.: Calderón–Zygmund theory for non-integral operators and the \(H^\infty \) functional calculus. Rev. Mat. Iberoam. 19(3), 919–942 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Coifman, R.R., Meyer, Y., Stein, E.M.: Some new function spaces and their applications to harmonic analysis. J. Funct. Anal. 62(2), 304–335 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Da Prato, G.: Regularity results of a convolution stochastic integral and applications to parabolic stochastic equations in a Hilbert space. Conf. Sem. Mat. Univ. Bari 182, 17 (1982)

    Google Scholar 

  16. Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions, encyclopedia of mathematics and its applications, vol. 44. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  17. Dahlberg, B.E.J., Kenig, C.E.: Hardy spaces and the Neumann problem in \(L^p\) for Laplace’s equation in Lipschitz domains. Ann. Math. (2) 125(3), 437–465 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. Harboure, E., Torrea, J.L., Viviani, B.E.: A vector-valued approach to tent spaces. J. Anal. Math. 56, 125–140 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hytönen, T.P., van Neerven, J.M.A.M., Portal, P.: Conical square function estimates in UMD Banach spaces and applications to \(H^\infty \)-functional calculi. J. Anal. Math. 106, 317–351 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Koch, H., Lamm, T.: Geometric flows with rough initial data. Asian J. Math. 16(2), 209–235 (2012)

    Google Scholar 

  21. Koch, H., Tataru, D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157(1), 22–35 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Krylov, N.V.: A generalization of the Littlewood–Paley inequality and some other results related to stochastic partial differential equations, Ulam Quart. 2 4, 16 ff (1994)

    Google Scholar 

  23. Krylov, N.V.: An analytic approach to SPDEs, stochastic partial differential equations: six perspectives. Math. Surv. Monogr. 64, 185–242 (1999)

    Article  Google Scholar 

  24. Krylov, N.V.: On the foundation of the \(L_p\)-theory of stochastic partial differential equations. Stochastic partial differential equations and applications-VII. Lecture Notes in Pure and Applied Mathematics, vol. 245, pp. 179–19. Chapman and Hall/CRC, Boca Raton (2006)

  25. Kunstmann, P.C., Weis, L.W.: Maximal \(L_p\)-regularity for parabolic equations, Fourier multiplier theorems and \(H^\infty \)-functional calculus. Functional analytic methods for evolution equations. Lecture Notes in Mathematics, vol. 1855, pp. 65–311. Springer, Berlin (2004)

  26. McIntosh, A.: Operators which have an \(H_\infty \) functional calculus. Miniconference on operator theory and partial differential equations (North Ryde, 1986). In: Proceedings, Centre for Mathematical Analysis of Australian National University, vol. 14, pp. 210–231. Australian National University, Canberra (1986)

  27. van Neerven, J.M.A.M., Veraar, M.C., Weis, L.W.: Maximal \(L^p\)-regularity for stochastic evolution equations. SIAM J. Math. Anal. 44(3), 1372–1414 (2012)

    Google Scholar 

  28. van Neerven, J.M.A.M., Veraar, M.C., Weis, L.W.: Stochastic maximal \(L^p\)-regularity. Ann. Probab. 40(2), 788–812 (2012)

  29. van Neerven, J.M.A.M., Veraar, M.C., Weis, L.W.: Stochastic integration in UMD Banach spaces. Ann. Probab. 35, 1438–1478 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. van Neerven, J.M.A.M., Weis, L.W.: Stochastic integration of functions with values in a Banach space. Studia Math. 166(2), 131–170 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Prüss, J., Simonett, G.: Maximal regularity for evolution equations in weighted \(L_p\)-spaces. Arch. Math. (Basel) 82(5), 415–431 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan van Neerven.

Additional information

J. van Neerven is supported by VICI subsidy 639.033.604 of the Netherlands Organisation for Scientific Research (NWO).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auscher, P., van Neerven, J. & Portal, P. Conical stochastic maximal \(L^p\)-regularity for \(1\leqslant p<\infty \) . Math. Ann. 359, 863–889 (2014). https://doi.org/10.1007/s00208-014-1019-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-014-1019-5

Mathematics Subject Classification (2000)

Navigation