Skip to main content
Log in

Modulus and the Poincaré inequality on metric measure spaces

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract.

The purpose of this paper is to develop the understanding of modulus and the Poincaré inequality, as defined on metric measure spaces. Various definitions for modulus and capacity are shown to coincide for general collections of metric measure spaces. Consequently, modulus is shown to be upper semi-continuous with respect to the limit of a sequence of curve families contained in a converging sequence of metric measure spaces. Moreover, several competing definitions for the Poincaré inequality are shown to coincide, if the underlying measure is doubling. One such characterization considers only continuous functions and their continuous upper gradients, and extends work of Heinonen and Koskela. Applications include showing that the p-Poincaré inequality (with a doubling measure), for p≥1, persists through to the limit of a sequence of converging pointed metric measure spaces — this extends results of Cheeger. A further application is the construction of new doubling measures in Euclidean space which admit a 1-Poincaré inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Björn, J.: Poincaré inequalities for powers and products of admissible weights. Ann. Acad. Sci. Fenn. Math. 26, 175–188 (2001)

    MathSciNet  Google Scholar 

  2. Bonk, M., Kleiner, B.: Quasisymmetric parametrizations of two-dimensional metric spheres. Invent. Math. 150, 127–183 (2002)

    Article  MATH  Google Scholar 

  3. Björn, J., MacManus, P., Shanmugalingam, N.: Fat sets and pointwise boundary estimates for p-harmonic functions in metric spaces. J. Anal. Math. 85, 339–369 (2001)

    MathSciNet  Google Scholar 

  4. Bridson, M.R., Swarup, G.A.: On Hausdorff-Gromov convergence and a theorem of Paulin. Enseign. Math. 40 (2), 267–289 (1994)

    MATH  Google Scholar 

  5. Bishop, C.J., Tyson, J.T.: Locally minimal sets for conformal dimension. Ann. Acad. Sci. Fenn. Math. 26, 361–373 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Cannon, J.W.: The combinatorial Riemann mapping theorem. Acta Math. 173, 155–234 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Cannon, J.W., Floyd, W.J., Parry, W.R.: Squaring rectangles: the finite Riemann mapping theorem. The mathematical legacy of Wilhelm Magnus: groups, geometry and special functions (Brooklyn, NY, 1992), Amer. Math. Soc., Providence, RI, 1994, pp. 133–212

  8. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)

    MathSciNet  MATH  Google Scholar 

  9. Dong-Pyo Chi, Gabjin Yun.: Gromov-Hausdorff topology and its applications to Riemannian manifolds. Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul, 1998

  10. David, G., Semmes, S.: Strong A weights, Sobolev inequalities and quasiconformal mappings. Analysis and partial differential equations, Dekker, New York, 1990, pp. 101–111

  11. David, G., Semmes, S.: Fractured fractals and broken dreams. The Clarendon Press Oxford University Press, New York, 1997

  12. Folland, G.B.: Real analysis. John Wiley & Sons Inc., New York, 1999

  13. Gehring, F.W.: Symmetrization of rings in space. Trans. Amer. Math. Soc. 101, 499–519 (1961)

    MATH  Google Scholar 

  14. Gromov, M.: Structures métriques pour les variétés riemanniennes. CEDIC, Paris, 1981, Edited by J. Lafontaine and P. Pansu

  15. Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces. Birkhäuser Boston Inc., Boston, MA, 1999

  16. Heinonen, J.: Lectures on analysis on metric spaces. Springer-Verlag, New York, 2001

  17. Heinonen, J., Koskela, P.: Definitions of quasiconformality. Invent. Math. 120, 61–79 (1995)

    MathSciNet  MATH  Google Scholar 

  18. Heinonen, J., Koskela, P.: Weighted Sobolev and Poincaré inequalities and quasiregular mappings of polynomial type. Math. Scand. 77, 251–271 (1995)

    MathSciNet  MATH  Google Scholar 

  19. Heinonen, J., Koskela, P.: From local to global in quasiconformal structures. Proc. Nat. Acad. Sci. U.S.A. 93, 554–556 (1996)

    MathSciNet  MATH  Google Scholar 

  20. Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181, 1–61 (1998)

    MathSciNet  MATH  Google Scholar 

  21. Heinonen, J., Koskela, P.: A note on Lipschitz functions, upper gradients, and the Poincaré inequality. New Zealand J. Math. 28, 37–42 (1999)

    MathSciNet  MATH  Google Scholar 

  22. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear potential theory of degenerate elliptic equations. The Clarendon Press Oxford University Press, New York, 1993, Oxford Science Publications

  23. Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.T.: Sobolev classes of Banach space-valued functions and quasiconformal mappings. J. Anal. Math. 85, 87–139 (2001)

    MathSciNet  Google Scholar 

  24. Holopainen, I., Shanmugalingam, N., Tyson, J.T.: The conformal Martin boundary of inner uniform domains in metric spaces. Papers on Analysis: A volume dedicated to Olli Martio on the occasion of his 60th birthday, Report. Univ. Jyväskylä 83, 2001

    Google Scholar 

  25. Kapovich, I., Benakli, N.: Boundaries of hyperbolic groups. To appear in Contemporary Mathematics AMS series, Combinatorial Group Theory, 2002

  26. Keith, S.: A differentiable structure for metric measure spaces. To appear in Advances in Mathematics

  27. Keith, S.: Measurable differentiable structures and the Poincaré inequality. Preprint, 2002

  28. Kirchheim, B.: Rectifiable metric spaces: local structure and regularity of the Hausdorff measure. Proc. Amer. Math. Soc. 121, 113–123 (1994)

    MathSciNet  MATH  Google Scholar 

  29. Koskela, P.: Removable sets for Sobolev spaces. Ark. Mat. 37, 291–304 (1999)

    MathSciNet  Google Scholar 

  30. Kallunki, S., Shanmugalingam, N.: Modulus and continuous capacity. Ann. Acad. Sci. Fenn. Math. 26, 455–464 (2001)

    MathSciNet  MATH  Google Scholar 

  31. Koskela, P., Shanmugalingam, N., Tyson, J.: Dirichlet forms, Poincaré inequalities, and the Sobolev spaces of Korevaar-Schoen. Preprint, 2001

  32. Martin, G.J.: Quasiconformal and bi-Lipschitz homeomorphisms, uniform domains and the quasihyperbolic metric. Trans. Amer. Math. Soc. 292, 169–191 (1985)

    MathSciNet  MATH  Google Scholar 

  33. Petersen, P.: Gromov-Hausdorff convergence of metric spaces. Differential geometry: Riemannian geometry (Los Angeles, CA, 1990), Amer. Math. Soc., Providence, RI, 1993, pp. 489–504

  34. Petersen, P.: Riemannian geometry. Springer-Verlag, New York, 1998

  35. Rajala, K.: Alexandrov spaces, upper gradients, and the Poincaré inequality. Masters Thesis (in Finnish), University of Jyväskylä, 2000

  36. Rickman, S.: Quasiregular mappings. Springer-Verlag, Berlin, 1993

  37. Semmes, S.: Bi-Lipschitz mappings and strong A weights. Ann. Acad. Sci. Fenn. Ser. A I Math. 18, 211–248 (1993)

    MathSciNet  MATH  Google Scholar 

  38. Semmes, S.: Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities. Selecta Math. (N.S.) 2, 155–295 (1996)

    MathSciNet  MATH  Google Scholar 

  39. Semmes, S.: On the nonexistence of bi-Lipschitz parameterizations and geometric problems about A -weights. Rev. Mat. Iberoamericana 12, 337–410 (1996)

    MathSciNet  MATH  Google Scholar 

  40. Semmes, S.: Some novel types of fractal geometry. The Clarendon Press Oxford University Press, New York, 2001

  41. Shanmugalingam, N.: Harmonic functions on metric spaces. Illinois J. Math. 45, 1021–1050 (2001)

    MathSciNet  MATH  Google Scholar 

  42. Tyson, J.T.: Sets of minimal Hausdorff dimension for quasiconformal maps. Proc. Amer. Math. Soc. 128(11), 3361–3367 (2000)

    MATH  Google Scholar 

  43. Tyson, J.T.: Lowering the Assouad dimension by quasisymmetric mappings. Illinois J. Math. 45, 641–656 (2001)

    MathSciNet  MATH  Google Scholar 

  44. Tyson, J.T.: Metric and geometric quasiconformality in Ahlfors regular Loewner spaces. Conform. Geom. Dyn. 5, 21–73 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ziemer, W.P.: Extremal length and p-capacity. Michigan Math. J. 16, 43–51 (1969)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Keith.

Additional information

Mathematics Subject Classification (2000):31C15, 46E35.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keith, S. Modulus and the Poincaré inequality on metric measure spaces. Math. Z. 245, 255–292 (2003). https://doi.org/10.1007/s00209-003-0542-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-003-0542-y

Keywords

Navigation