Skip to main content

Advertisement

Log in

Estimation of the hyperbolic metric by using the punctured plane

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let \(\rho_\Omega\) denote the density of the hyperbolic metric for a domain Ω in the extended complex plane \(\overline{\mathbb {C}}\). We prove the inequality

$$\rho_{\Omega}(z)\leq C\, {\rm sup} \{\rho_{\mathbb {C}\setminus \{a,b\}}(z): a,b\in\partial \Omega\},\quad z\in \Omega,\,\Omega\subset \mathbb {C},$$

with C = 8.27. The inequality was proved by Sugawa and Vuorinen with C = 10.33. The proof uses monotonicity properties of the hyperbolic metric for the thrice punctured extended plane. Gardiner and Lakic proved the inequality

$$\rho_\Omega(z)\leq C_1\, {\rm sup} \{\rho_{\overline{\mathbb {C}}\setminus \{a,b,c\}}(z): a,b,c\in\partial \Omega\},\quad z\in \Omega$$

with an unspecified constant C 1. We show that the best constant Σ1 in this inequality is between 3.25 and 8.27. We also prove a related conjecture formulated by Sugawa and Vuorinen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Agard, S.: Distortion theorems for quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A I(413), 12 pp (1968)

  2. Ahlfors L.V. (1973). Conformal Invariants. McGraw Hill, New York

    MATH  Google Scholar 

  3. Anderson G.D., Vamanamurthy M.K., Vuorinen M. (1997). Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, New York

    MATH  Google Scholar 

  4. Beardon A.F., Pommerenke Ch. (1978). The Poincaré metric of plane domains. J. London Math. Soc. 18(2): 475–483

    Article  MATH  MathSciNet  Google Scholar 

  5. Bonk M., Cherry W. (1996). Bounds on spherical derivatives for maps into regions with symmetries. J. Anal. Math. 69: 249–274

    Article  MATH  MathSciNet  Google Scholar 

  6. Conway J.B. (1995). Functions of One Complex Variable II. Springer, Berlin

    MATH  Google Scholar 

  7. Gardiner F.P., Lakic N. (2001). Comparing Poincaré densities. Ann. Math. 154(2): 245–267

    Article  MATH  MathSciNet  Google Scholar 

  8. Hayman W.K. (1989). Subharmonic Functions, vol. 2. Academic, London

    Google Scholar 

  9. Hempel J.A. (1979). The Poincaré metric on the twice punctured plane and the theorems of Landau and Schottky. J. London Math. Soc. 20(2): 435–445

    Article  MATH  MathSciNet  Google Scholar 

  10. Minda D. (1985). Estimates for the hyperbolic metric. Kodai Math. J. 8: 249–258

    Article  MATH  MathSciNet  Google Scholar 

  11. Minda D. (1987). A reflection principle for the hyperbolic metric and applications to geometric function theory. Complex Variables 8: 129–144

    MATH  MathSciNet  Google Scholar 

  12. Nevanlinna R. (1970). Analytic Functions. Springer, Berlin

    MATH  Google Scholar 

  13. Solynin A.Yu. (1997). Functional inequalities via polarization. St. Petersburg Math. J. 8: 1015–1038

    MathSciNet  Google Scholar 

  14. Solynin A.Yu., Vuorinen M. (2001). Estimates for the hyperbolic metric of the punctured plane and applications. Israel J. Math. 124: 29–60

    Article  MATH  MathSciNet  Google Scholar 

  15. Sugawa T., Vuorinen M. (2005). Some inequalities for the Poincaré metric of plane domains. Math. Z. 250: 885–906

    Article  MATH  MathSciNet  Google Scholar 

  16. Weitsman A. (1979). A symmetry property of the Poincaré metric. Bull. London Math. Soc. 11: 295–299

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Betsakos.

Additional information

The author was partially supported by the EPEAK programm Pythagoras II (Greece).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Betsakos, D. Estimation of the hyperbolic metric by using the punctured plane. Math. Z. 259, 187–196 (2008). https://doi.org/10.1007/s00209-007-0218-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-007-0218-0

Keywords

Mathematics Subject Classification (2000)

Navigation